
Version of 2 April 2012

A KBasic course

Introduction

New versions of the programming language Basic support structured modular
programming which has become a prerequisite for writing correct programs.
Notions such as “top-down” and “bottom-up” programming as well as “event
driven” program development have become part of the information
vocabulary. This tutorial is devoted to teach how to program according to the
mentioned principles. It is intended to be used together with a computer
equipped with “Kbasic”,1 not only theoretical but also practical abilities have
to be developed.

Starting KBasic
Using the trial option, KBasic can perform without the need to pay for it. Later
when you decide to continue to use it you should register and pay. It is not too
expensive, furthermore you can later decide to upgrade to a professional
version, that is a bit expensive, but offers more features. For beginners the
professional features are definitely not necessary. First one has to learn how to
use the different elements of the Kbasic language and how to use them, later
“forms” and what can be placed on them will be an important part of the
tutorial. Structural programming will be taken into consideration first, later the
event driven concept will be expounded.

 When you start KBasic you will see after clicking “trial” the opening
window.The upper part is shown below.

1

That is really an overwhelming collection of icons. We choose from “File” the
item “New File”. Note that we could have typed Ctrl+N.

 Surprisingly a warning is displayed. You must get accustomed to the fact that
Kbasic likes to inform its users about what it considers important.

After clicking “OK” we can insert our code.

The first program will be one that draws a square. As “KBasic” does not know
how the square has to be drawn we have to explain in the KBasic language
how to do it.2

A computer program is nothing else as a number of prescriptions in computer
language: a language the computer understands, in this case BASIC, describing how a
certain task should be performed. So in a number of prescriptions it has to be explained
how the rectangle should be represented on the screen. The word “prescription” has a
certain notion in human language: the practitioner prescribes what to do in case of an
illness to get healthy again. A computer program is the same, in a sense as it describes
which actions have to be taken successively.

In BASIC different types of “prescriptions” exist. The first we work with is called
“subroutine”. A subroutine describes how a certain task has to be performed. Imagine
you have to explain to a child how a square has to be drawn. So the first task is: draw a
square. We have to explain what is meant by “draw a square”: how to do it. We would
say:” draw a horizontal line”, then “draw the two vertical ones” and after that “draw a
horizontal line” again. To help the child we could write this down on a piece of paper
as follows:

2

draw square:

draw horizontal line

draw vertical lines

draw vertical lines

draw vertical lines

draw horizontal lines

draw horizontal line:

draw "----------------"
draw vertical lines:

draw “| |”

By doing this we have already nearly written the BASIC program. We enter
code that will be our “square program”. So we enter the first lines of that
program:

The first line is not a comment line but a command. It says execute the subroutine with
the name “square”. The suboutine starts with “sub” followed by its name and ends with
“end” followed by it name. Note that you don't need to state in KBasic explicitly that
you want a subroutine to be executed. Do not use the word “call”.
We can try to execute the program thus far by clicking the little green triangle.

It is green but turns to blue when clicked.

The result: an error message is displayed:

3

The offending line has changed its colour. It says a syntax error, but the word horizontal
is correct, so what is wrong?

“horizontal and “vertical” are subroutine calls. But we did not yet explain to the
computer what is meant by these words. So we add the following explanation of what
is meant by “horizontal” and “vertical”:

After inserting the above text running the program will result in
a window showing a message:

We will not follow this suggestion but click OK after which a new message
appears telling us to save the source code first. After obeyed a window will open
with the square drawn:

4

Unfortunately Kbasic contains a bug so that it is not possible to close the window
by clicking the cross in the upper right corner. But it does not impede further
working.

The complete square program now follows, it is stored
in the listings as “square1”.

Note that the second line contains the command “end” Do not confuse this
“end” with the “end” in “end sub”. After having executed the line containing
“End Sub” it returns to the main program. After “square” has been executed
we indicate that the program should stop execution by inserting the BASIC
word “end”. Words like “sub” and “end” are what are called reserved words
They are reserved for BASIC and should not be used otherwise.

We will discuss the routines “horizontal” and “vertical”.

Question

What have the statements contained in these subroutines in common?”

Answer

In both is what has to be written to the screen surrounded by the ” symbol.
What is contained between these symbols is called “string”.

Remark

A string may contain also spaces. A space is not nothing. We
changed the source code, we save our work by clicking: “Save all”.

5

Modify “square” in such a way that the square to be printed
will appear a bit lower on the screen. To do so we add
“emptyline” and explain what is meant by “empty line”:
(Stored as emptyline)

It is advisable to add text to the program that explains to the user its meaning.
Short explanations may follow the line immediately. Longer text can be added on
separate lines. To indicate that the text is intended to be read by the user and not
by the KBASIC system the text should be preceded by the symbol here shown
between asterisks: *'* . Also “rem” can be used to achieve the same result,
although it is outdated. The term for such lines is “comment”. The complete
listing can be found as “square” under “Listings” at the end of this tutorial

Note that the different routines of the program “square” are separated by a line
containing an empty comment. Furthermore it is advisable to indent the
contents of the different subroutines, especially in longer KBASIC programs it
is advisable to do so to make them more readable7.

Exercise

Change the program in such a way that it will show three rectangles

A program that prints your address.
It is possible to perform such a task with a word-processor, but
to do so in Kbasic gives you the possibility to exercise the
earlier mentioned programming principles. The data used here
are those of “Emilie Sagario”, you should use your own data, of
course.

Again we start with a simple program that we expand into one that
will perform as intended. This is called “refinement”, that is to say
adding levels to the program until arriving at the level of BASIC
instructions.

To begin with, what should appear on the screen is as follows

EMILIE SAGARIO

Adamville Compound

Marigondon, LapuLapuCity

0963848889

This should appear a few lines from the top of the screen

6

Exercise

Write the “body” of the program.

Note that the information is stored in variables: person STR,
streetSTR enz. These variables should be declared: Mentioned
in dim(ension) statements. Failure to do so leads to the
errormessage:

If you write the dim-statement as:

Dim personSTR, streetSTR, CitySTR as String

only CitySTR will be stored as a string type. Therefore each
dim statement ends with mentioning the type of the variable.
This is not obligatory but wise to do as it protects you from
making difficult to find errors. It is not necessary to put every
variable on a separate line as shown in this example:

dim personSTR as string,streetSTR as string,citySTR as string,landline as integer

Now we can finish the program. It is stored as “adres1” in the
listings. Note that the word “landline” has been used. We
could have used the term “telephone” as well.

Exercises:

• Modify this program in such a way that it shows
your address three times, well separated by a few
empty lines.

• Write a program that fills the screen with stars: “*”. Fore example 20 lines of
50 stars

• Write a progam that displays: “Hello“, followed by your name.

A bit of arithmetic and how to compare

Until now we only solved very simple programming problems,
such as showing a rectangle and an address. Now we will start
writing programs to solve problems involving arithmetical
calculations.

The first one adds 2 pesos to the price of a certain commodity.

7

Here is the “body” of the program:

Note that addition is declared as constant:

Const addition as Short = 2

Using a constant instead of a variable like “price” has the
advantage that “addition” cannot accidentally be changed.

The subroutine that does the computation is as follows:

 Sub calculate
 price = price + addition
End Sub

The subroutine “Calculate” first gives the variables “price” its
value. After that “price” is calculated. First to “price” being 25
the value 2 is added, after that the calculated value is assigned
to the variable left of the “=” symbol.

Note that in this case the old value of “price” is no longer available: it
has been overwritten.

The program will be expanded in such a way that the user can enter the
price. To do so the subroutine “Ask_Price” is added:

A text is displayed explaining the user what is expected.
Everything between the “ symbols is displayed, after that the
computer waits for “priceSTR”. It is converted to “price” by
using the function “val” as shown.

More about functions later.

The subroutine “Ask_Price” may also be named “ASK_PRICE”, so
names may be given in lower as well upper case. It is allowed to
include the symbol “_” in names. But the KBasic literature does not
support this option.

The complete program is stored as price1.

A program has to be written that compares two prices, input by the
keyboard and then states which one is lowest and which is highest. In it
most simple form the start of the program is as follows:

8

Two integervariables are used in this routine: “price1 and “price2”.
Furthermore one string-variable: priceSTR. They are declared at the
beginning of the program as shown below.

Explain what has to be done in the subroutine “ComparePrices”.

The following question has to be answered: “Is the first price that
has been typed lower than the last one?” If yes the output should
be: “The first price is lower than the second”, else: “The first price
is higher than the second”. Important words used here are “if” and
“else” as these express what should be done under which condition.
In this case what has to be printed on the screen.

If prijs1 < prijs2 then lower else higher end if

This is called a conditional statement. After if is stated what has
to be done when the condition is true, after else in case it is false.
Using more words the statement could be read as follows: If it is
true that prijs1 is lower than prijs2 than the subroutine lower
should be executed else higher. See how this is coded in Kbasic:

Private Sub lower_higher
If price1 < price2 Then
 lower
Else
 higher
End If
End Sub

Now write the complete program. Write first “lower” and “higher”

Private Sub lower
 print ”price 1 is lower than price 2”
End Sub

 '
Private Sub higher
 print ”price 1 is higher than price 2”
End Sub

Write the subroutine “terminate” .

Sub terminate()
 print ””
 input ”Enter a character to stop; priceSTR
 price1 = val(priceSTR)
 End

9

End Sub

The finished program is stored in the listings as “price2”.

Test what happens when two identical prices are entered.

When the same price is entered the program erroneously prints
that price1 is higher than price 2 because price1 is not lower
than price2 so what follows after “else” is done.

Modify the program in such a way that this possibility is
handled correctly. The subroutine “LowerHigher” has to be
adapted and “equal” has to be added:

Private Sub lower_higher
 If price1 = price2 Then
 equal
 Else
 If price1 < price2 Then
 lower
 Else
 higher
 End If
 End If
End Sub

 '
Sub equal
print ”price 1 is as high as price 2”
End Sub

Exercises

Write a program that asks the user to enter a price. After that
the program determines whether that price is higher or lower
than 25. Prices below that value should stay the same. To
prices of 25 and higher an amount of 2 should be added. The
new price is shown then.

Write a program that asks the user to enter a price. After that
the program determines whether that price is higher or lower
than 10. To prices below that value an amount of 1 should be
added. For prices between 10 and 25 the amount is 2. Prices
higher than 25 should increase by 5.

As the last exercise is more difficult than the former, it will be
discussed in detail. Before writing the necessary “if”-
statements it is wise to first write down a table and after that a
decision tree to show what has to be done.

Price lower than 10 price between 10 and 25 price higher than 25

add 1 add 2 add 5

The decision tree looks as follows:

10

Now we can write the “IF”-statements:

Private Sub calculate
If price < 10 Then
 higher1
Else
If price > 25 Then
 higher5
Else
 higher2
End If
End If
End Sub

Note that in the subroutine “calculate» the text END IF” has been used twice.
This is necessary as each “IF”-statement should have its accompanying “END
IF”. Failing to do so will generate an error message. Take note of the indentations
to keep the code easy readable. You can now type the program displayed above
in KBasic to experiment with it. (The complete program is stored as “price3”)

Exercise

Write a program that accepts a price between zero and ten.

 The most important subroutine is the one that determines what to print: The program
should display which number has been entered.

11

This was rather cumbersome to have to write all those “IF”s with the accompanying
END IF's. Easily you forget one of the “end if”s and an error message will be
generated. Later we will learn that it can be done easier. The complete program is
stored as “manyif”s.

Working with characters
In computer science “character” is not about a characteristic property of a person, but
about the input that can be given using a keyboard. These can be divided in letters (a –
z) ciphers (0 – 9) and special characters such as “!”, “@” etc. All together are called
alphanumeric characters. Everything you see on the keyboard, so to speak.

To distinguish between values assigned to characters to be manipulated after being
input by the keyboard and values used for computing the name of the variable used for
such manipulation has to be dimensioned as string as has already been shown several
times in the preciding programs.

It has become customary by BASIC programmers to have the name of such a variabele
be preceded by “str” (It is called hungarian notation as it was proposed by a hungarian
programmer). Some programmers use this string as a postfix instead of a prefix. It is up
to you to follow one of these customs to improve the readability of your code. In this
tutorial the suffix “str” has been capitalised for that purpose.

If the program contains the DIM-statement “price as string”, the price is stored in a
different way than when the line would read “ dim price as short”.

To help the programmer in manipulating characters he can use what are called
character functions. Later the notion “function” will be explained in extenso, for the
moment it suffices to now that a function returns a value, that can be used in the
program.

Some of the functions available in Kbasic to manipulate characters are slightly different
from those as used in most BASIC dialects. We will discuss now these functions as
defined for Kbasic. These functions are:

12

CHR(n) - return character of ascii value n STR(n) - returns string equivalent of n.

Example:

When a letter is typed, for example “c” the sentence “this is letter 3 of the
alphabet” will be shown on the screen.

As an exercise write this program first and after that look at the solution.
Part of the subroutine “determine” is shown below:

Because the value assigned to the letter a is 97, we need to deduct 96 from this
value to get the correct number to be displayed.

The program is stored as “whichar”

Exercise:

Modify the program in such a way that the next letter from the alfabet is displayed.

The solution is shown below: (stored as nexchar)

Stored as “nexchar”

ASC(sSTR) - ascii value of sSTR

Example as above .

MID -The function MID as implemented in Kbasic is shown in the following example:

13

So the function returns the string starting at the fourth character up to the end.

INSTR - The following example show how “Instr” should be used:

The variable “posit” is an integer type. It will contain the position of “str” in
“letterstr”. So this code will deliver the value four as it is the position of the second
argument within the first.

The functions left, right, mid and select are demonstrated in the following program

14

The program is stored as “charfuncs”.

Suppose “TheString » = « The quick brown fox jumps over the lazydog. »

The space between “lazy” and “dog” is left out purposely. Insert it in the demonstration
program to see the result.

As an exercise modify the program that demonstrates the function
“asc” in such a way that it asks for the input of one letter and will print
on the screen the next character and its ascii value.

Until a value has been found
We will change the character programs discussed, in such a way that the user is
not confined to input only one letter. When he enters a zero the program stops.
Change the program that prints the next letter of the alfabet in this way. Kbasic
offers diiferent commands to chosen from. They are respectively:

WHILE – END WHILE

DO LOOP – WHILE

DO WHILE – LOOP

DO LOOP – UNTIL

DO UNTIL – LOOP

If we allow the user to input a letter only a certain number of times the
command FOR-NEXT, which will be discussed later, can be used, in
that case the user does not need to input a value of zero to stop. First

15

we use the WHILE-END WHILE command. Look at the program
“price2”. This time it is not the module “Determine” that has to be
adapted, but “convert”. Convert has to be done until a zero has been
typed. This module now becomes:

Private Sub convert
 While letterSTR <> “0”
 Ask_Letter
 Determine
 End While
End Sub

After “while” is the condition stated that stops execution of the commands. The
complete program can be found in the listings under “while".

Now if we execute this program we will see that the program prints after
entering the value of zero:

This should not happen of course. Look at the subroutine “determine”
and determine what is wrong.

Something is missing. How can it be remedied?

Answer

We could add an IF-statement in the subroutine “determine”:

Solution:

 Private Sub Determine
 If letterSTR <> "0" Then
 value = Asc(letterSTR)
 value = value - 96
 new_letterSTR = Chr(value + 1)
 Print "This is letter: “ + value + “of the alfabet"
 Else
 Print "this was a zero so the program ended."
 End If
 End Sub

Perform the same task in such a way that the DO UNTIL – LOOP construction
is used.

 Private Sub convert
Do Until letterSTR = “0”
 ask_char
 Determine
Loop

 End Sub

16

 '
Note that only the condition stated differs. It depends on the problem to be
solved which construction should be used.

Instead of testing wheter “letterSTR” equals zero we could the same using the
variable “value”. As an exercise chang the subroutine “convert” accordingly.

Solution:

Run the program and note that it does not function as intended as immediately
“done” is displayed. Why?

Solution:

The program tests whether “value” equals zero and because Kbasic initilises
variables to zero the program behaves accordingly. This can easily be remidied
by giving “value” an initial value:

dim value as short = 5

Any value > 0 will do. This solves the problem The program is stored as
“chnot” .

It is left to the user of this tutorial to apply the other loop-constructs. For
example to practise with what has been discussed above write a program that
asks for the input of one letter and prints on the screen the numerical value
assigned to it.

As has been said earlier there is another way to perform a certain task. It is
called the FOR-NEXT loop. This construction can be used when a task has to be
performed a certain number of times. For example, we want a program that
converts a digit into a string. Without the possibility of using the FOR-NEXT
loop, we have to write a lot of statements such as in the program that converts a
digit to a string:

This is really not a pleasant way of programming, furthermore the many ifs
sould be accompqnied by the same amount of end ifs. We can improve upon it a
little bit as shown below:

17

Still a lot of elseifs. Later we will rewrite the program using the CASE
construction in such a way that all the digits between 0 and 10 are converted to a
string and printed.

Exercise

Rewrite the above program in such a way that the text ”The price is” followed
by the digit is printed.

Solution

Only the subroutine “convert” has to be rewritten:

Exercise

Use the FOR-NEXT construction to rewrite the program “square”

Solution

18

Exercise

Write the “price” program using a loop construct.

Solution

The subroutine convert has been written as follows:

Sub convert

 Do Until value = 0
 Ask_char
 Determine
 Loop
End Sub

Try it in your program and note that the program doesn't function at all.

Question

What is the cause of the problem.?

Answer

When starting a program all numerical variables are set to zero.
When the “Do – Until” condition is tested the value of price is zero
and therefore the program ends.

Solution

you can overrule the setting to zero by giving variables an initial value as shown below.

 Dim price As Short = 12

Changing the Dim statement this way solves the problem.
The program is stored as “testchar”.

In case of

A useful construction to simplify a task is offered by
the SELECT CASE construction. This can be used,
for example, if the user is allowed to enter a value. As
it is not known beforehand what the input will be a lot
of IF statements would be required that handle all
possibilities. Look again at the program that accepts a
price between 0 and 10. Here the routine “Datermine”
is programmed using the SELECT CASE
construction:

19

Note that the variable price is obligatory after “Select
Case” but added as comment after “End Select” to
make clear for the reader end select of what.

The complete program is stored named “selcas”.

Array’s
Suppose we need to decide, after 10 numbers has
been input, which of these is the biggest. It would be
clumsy when we had to declare ten variables, such as
number1, number 2 etcetera. Again there exists a
simple solution. We will make an array of these ten
numbers. First we have to tell BASIC how big our
array will be by means of the dimension statement:

DIM number[10]
Around “10” we could have used the round brackets,
but it is advisable to use the quare ones. The program
is stored as “tennum”:7

Exercises
 A certain Italian Leonardo Pisano, better known as
Leonardo Fibonacci (Fibonacci is a reduction from
“Filius Bonacci”, meaning son of Bonaccus) put a lot
of effort in replacing the Latin numerals (I, V, X, L,
C, M) by the Arabian ones (1, 5, 10, 50, 100, 1000)
respectively. He poses in his book “Liber Abaci» the
following problem: How many pairs of rabbits does
one have at the end of a year as at the beginning of
that year one has only one pair of rabbits (a pair of
rabbits consists of a male an female rabbit) and the
following rules apply:

1. Each pair gets two rabbits every month.

2. Rabbits are grown up a month after birth.

3. Rabbits don’t die.

20

Write a program that shows how the number of
rabbits grows. First write down how the number of
rabbits grows to get insight how the problem should
be solved.

Solution

After 1 month 1 pair is grown up.

After 1 month there is 1 pair of rabbits.

After 2 months 1 pair is grown up and 1 pair of rabbits born in that month.

After 2 months there are 2 pairs of rabbits.

After 3 months 2 pairs are grown up and 1 pair of rabbits born in that month.

After 2 months there are 2 + 1 = 3 pairs of rabbits.

After 4 months 3 pairs are grown up and 2 pairs of rabbits born in that month.

After 4 months there are 3 + 2 = 5 pairs of rabbits.

Etcetera

The numbers indicating how much pairs of rabbits
one owns are called the Fibonacci-numbers. These
are, as can be read from the above: 1, 2, 3, 5 etcetera.

Inspect the solution stored as “fibon” and note how
the wrong output about the first month has been
suppressed.

Note the first dim statement:

Dim month as integer = 0

Failure to initialise “month” will generate an error
message!

Another problem to be solved is determination of
prime numbers. First a textual explanation will be
given after that try to solve the problem. Use an
array!

First the definition of a prime number will be given: A
prime number is a natural number divisible by 1 and
itself only. The number 1 is not considered a prime
number. The solution described here is an old one. It
has been formulated by Eratosthenes. He described
the solution as sieving out the numbers that are
divisible, for that reason the solution resented here is
called the sieve of Eratosthenes.

Copy the following table on paper as it will be used hereafter.

1 2 3 4 5 6 7 8 9 10

21

11 12 13 14 15 16 17 18 19 20

 21 22 23 24 25 26 27 28 29 30

 31 32 33 34 35 36 37 38 39 40

 41 42 43 44 45 46 47 48 49 50

 51 52 53 54 55 56 57 58 59 60

 61 62 63 64 65 66 67 68 69 70

 71 72 73 74 75 76 77 78 79 80

 81 82 83 84 85 86 87 88 89 90

 91 92 93 94 95 96 97 98 99 100

We will now sieve out numbers that are not primes
by drawing a line through them. As has been said 1 is
not considered a prime so we put a line through it.
The number 2 is a prime, we indicate it by encircling
it.

Which numbers do you think will be removed first?

Answer

All that are divisible by 2. To start with, these are the
numbers in the column under 2. To remove them we
draw a vertical line starting at 12. Then the numbers
that has to be withdrawn are in the column starting
with 4. We draw now a vertical line starting at 4, after
that we jump over the next column and again draw a
line, up until all numbers in the column starting with
10 has been eliminated too.

Note that all numbers divisible by 3 are removed by
drawing a ling diagonally. In general the procedure
can be stated as: Encircle a prime number and then
remove all number that are divisible by them.

Exercise

Write now the program “Sieve of Eratosthenes”, but
read first what follows.

In the program to write we can use the BASIC-
function MOD. To sieve out a number that is
devisable by 2 we write: rest = thisnumber MOD 2.
As can be guessed easily the rest of the division of
‘thisnumber’ by 2 is moved to the variable ‘rest’.
Now with this information provided write the
program. After that look at “Erathos”.

Introduction to working with data

Manipulation of a huge number of data is an old
problem. The first magistrate who organised a census
was the Roman king Servius Tullius; also according to
the bible the Romans held census. How these data
were manipulated we don’t know. At the end of the

22

nineteenth century the manipulation of data resulting
from census, held in the USA, took so much time that
the result became available when a new bookselling
was organized. This census took place every ten years.
In 1890 the result of the census was 62 million data. A
new method to manipulate this enormous amount had
to be sought. An American statistic, Dr Herman
Hollerith invented an apparatus that enabled to
process the data in one third of the time it took to do
that for the census of 1880 which were the data of 50
million people. The data of the census of 1890 were
punched by hand in thin cards that got the name
‘punch card’, of course. These cards were then fed
into a machine that was equipped with electronic
contacts. When a hole was found an electric current
incremented a counter by one. For every row in the
card the same gadget was implemented. Dr Hollerith
soon got the idea to apply his invention to
administrative processes. The first machines were
installed at the American Railways. The next machine
that Hollerith developed was a sorting machine. In
1896 Hollerith started the “Tabulating Machine
Corporation”. In 1911 two other companies joined
and the name was changed to “Computing Tabulating
Recording Company”. In 1914 Hollerith’s
administrative system consisted as follows:

1. a hand punch machine data made it possible to enter 9 punches at the same time.

2. an electric sorting machine

3. An electric tabulating machine

In 1924 the name was changed again, this time into
“International Business Machines Corporation”, well
known as “IBM”. This company produced until 1960
machines that processed punch cards. The last one
did hundred cards in one minute. However,
programming with a computer this machine was not
yet possible. It had to be done by inserting cables in a
board, in the same way as long ago, telephone calls
were made possible.

The first computers are developed at scientific
institutions and were used only to do mathematical
computations. Again a volkstelling was the impuoes
for the next development. J. Prosper Eckert and dr.
John Mauchly developed for the Bureau of censuses
the “Universal Automatic Computer” shortened to
“Univac”. They started the “Eckert-Mauchly
Computer Corporation, Later bought by “Remington-
Rand” and after that to “Sperry Rand”. The “Univac”
is now considered to be the first commercial available
computer. One is installed in the “Smithsonian
Institue”, at Washington DC. In total 48 of these
machines were built.

Working with files

23

One of the first programs we developed was a
program that prints an address. Now suppose that we
want to preserve that address, possibly with the
addition of more addresses. To make that possible we
need to store them in a “file”. A file is a collection of
data. These data can be alphanumeric ones such as
adresses, but also programs. We are concerned now
about storing our alphanumeric data. To store our
data we have to create a file. This is done with the
following statement. (what is typed between brackets
is an example of course)

 File.Create("H:\mytest.txt")

Note that the disk used in this example is “H”. It is
strongly advised when experimenting with files not to
use your “C” drive, preferably a disc such as a
“Secure Digital” one.

After having created the file we open it with the
following statement:

OPEN "H:\mytest.txt" FOR OUTPUT AS #1

 Between the quotes the name of the file is written, in
our case mytest.txt. Then we will store the data, so we
will “output” it, for each item we have to write an
output statement, the first is:

PRINT #1, "A sentence"

The file has to be preserved, this is done by the “close” statement:

Close #1 ' close file

A simple program that stores in a file the data used for the earlier developed program adres is:

Dim tekst as string
File.Create("D:\adres.txt")
OPEN "D:\adres.txt" FOR OUTPUT AS #1
print #1,"name:Emilie Sagario|"
print #1,"adres:Adamville Compound|"
print #1,"city:6015 Marigondon, Lapulapu City|"
print #1, "country:Philippines|"
print #1,"telephone:landline: 00 637239474563|"
print #1,""
Close #1
Print "done"
End

Because Kbasic contains several bugs when it comes
to file handling some measures has been taken to
circumvewnt them. The last “Print #1” statement will
generate a blank. This is done as the last character
written gets lost. Furthermore each statement ends
with the character “|",because

Kbasic fails to end the lines with carriage-return
characters. In ths way we are able to separate the
items printed.

24

 We want to see the contents of the file just created.
To do so do so we open the file. The name of the file
has to be the same as the one on the disk of course,
instead of “emi” we can use any name.

' now to read the address:
Dim tekst as string
' open file for reading
Open "D:\adres.txt" For Input As #1
Do While Not EOF(1) ' test for end of file
Line Input #1, tekst ' get the data from file
Print tekst
Loop
Close #1 ' close file
Print "this ends the output program"

The information read by the command “Line
Input #1” will be stored in the variable “tekst”
and then shown on the screen. This simple program
just displays the line read as it is. It could be stored in
an array for further manipulation of course.

As an exercise modify the program in such a way that
in the line read the caracter “|” is searched and when
found an appriate action is taken.

It would rather cumbersome if we had to change our
program every time we have to enter a new address.
Better to make it possible to enter those data with the
keyboard. The following simple program does it:

(in the listings stored as adres1)

25

To have a look at our file we can use the earlier
developed program but don’t forget to adapt the line
to open the file for input.

As an exercise simplify the “adres” program.

A lot more could be said about working with files,
but for an introductory course we will not go further
into it. 654

Different subroutines
A well written program is made up as a number of
units. Until now only a few types have been used: the
subroutine and the function.There is another type of
subroutine: the one with arguments. First the
difference between the simple subroutine, used thus
far and the one with arguments will be explained.

Suppose somebody is working for you and does as a
rule two tasks: cleaning the house, and going to the
supermaket to buy for you what is needed. As it is
assumed that cleaning the house always involves the
same task, we could say in computer terms:
clear_the_house. But shopping is not always about
the same items, we have to provide our helper with a
shopping list. In computer terms we have to provide a
list of items, called the arguments. In our example the
shopping task could be invoked by: do_shopping salt,
pepper, rice. We willl now write a program using
such a list of items.

As an example we change the program that accepts a
price between 0 and 10 and then converts the number
to text. In the first place we have to change the
subroutine calculate:

'vanaf hier

Dim price As Integer

Dim newprice as Integer
Const addition as Integer = 2
'
addprice
end
'
Sub addprice
price = 25
calculate(price)
show_price
End Sub
'
Sub calculate(ByVal pretium)
newprice = pretium + addition
End Sub

26

'
Sub show_price()
print "the new price = " + newprice
End Sub

'tot hier

Sub calculate(ByVal pretium)
newprice = pretium + addition
End Sub
'
After the name of the subroutine the argument, in this
case “pretium” follows enclosed in brackets. The
routine show_price has been adapted too.

Sub show_price()
print "the new price = " + newprice
End Sub

It is customary to add a pair of bracketsbehind the
name of the subroutine even when the list of
arguments is empty.
The calls to the subroutine “calculate has been
changed accordingly:

calculate(price)

We could have written:
calculate(25)

But to make sure that when calling calculate” ”price”
should be used and not “pretium”,

Even when not using arguments it is customary to
use brackets to indicate that the list of arguments is
empty, as for example: show_price()

Now that we know the meaning of brackets behind the
names of subroutines we will adhere to that practice.
Here follows the complete program for your perusal:

27

Look at the subroutine calculate.
The name of the argument has been changed to
“pretium” and is preceded by “ByVal”. Use always a
different variabele name following the term “ByVal”
and use that in the subroutine. It will save you a lot of
trouble! “ByVal” means that Kbasic will change the
value of price. So after the subroutine has been
executed the variable, in this case “price” has
changed. If instead of “ByVal”, “ByRef” had been
used Kbasic will make a copy of “price” and act
upon that copy. So the variable “price” will not have
been changed and has the same value after exection
of the subroutine as before. There is seldom a need to
use “ByRef”, therefore the default text suggested by
Kbasic is “ByVal” and will be used as such.

If everything is clear thus far we will now discuss the
notion “function” and how to use it. What is the
advantage of using a function over the call of the
subroutine with parameters? We can use the result of
the function call immediately in our program as the
result is assigned to the variable used in the call:

print "the square is: " + square(value)

Suppose the variable “value” was given the value 5
then the print command prints “25” as the function
“square” returned that value

 Look now at the function square:

Function square(ByVal n as Integer) as integer
 Return n * n
End Function

and look at the complete program:

28

It is clear what the function does. Note that the variable used in
the function, in this case “n”, should not be declared outside the
function. The argument(s) have to be provided between “(” and
“)” after the name of the function “square”, exactly in the same
way as for the subroutine with arguments The program is stored
as “funcsquare”.

Exercise

Rewrite the program that adds 2 pesos to the price of 25 using
the function calculate.

Try to rewrite the program before looking at the solution given
below.

Exercise

Rewrite the Sieve of Erathosthenes using a function to sieve.

True and False

Earlier we used already the notions true and false, for example
in the program that tested the height of a price. We give now
some advice how to make the program more readable when
using the IF ... THEN statement. The outcome of such a
statement is true or false. Bij declaring a boolean variable that

29

descibes whether the outcome of a comparison is true or false
we can write now simple code using such a variable. (Boolean
variables are those that are used to decide between TRUE and
FALSE). Look in the listings at the simple program “bools”
how it can be done. Here part of it is shown:

number = val(letterSTR)
If number < 10 Then
 compareTF = True
Else
 compareTF = False
End If
If compareTF Then
 print letterSTR + " < 10 "
Else
 print letterSTR + " > 10 "
End If

It seems perhaps silly as we could have decided immediately in
the first IF ... THEN statement what to do, but in large
programs it makes the code more readable, especially with well
choosen names for the variables. Note that we have written
“compareTF” instead of “compare”. This is not obligatory but
is done to make the code more readable, so now we know that
compare is a boolean variable.

George Boole, developed an algebra with the following rules:

1 + 0 = 1 0 * 0 = 0

0 + 1 = 1 0 * 1 = 0

1 + 1 = 1 1 * 1 = 1

Note the difference between “standard” algebra and “boolean algebra”: In boolean algebra 1 + 1 = 1.

In computer science, also in programming, this algebra is
widely used. Write instead of “+” OR and instead of “*” AND.

Another logical operator is “NOT”. It simply reverses the value of
the logical variable. See below how it can be used in the above
program:
If not compareTF Then
 print letterSTR + " > 10"
Else
 print letterSTR + " < 10"
End If

Arithmetic laws to be tested by a program in BASIC

Some interesting arithmetical laws follow.

Nikomachos Of Gerasa who lived around 100 AC noted the
following rule when computing the third power of integers:

 3

1 = 1

30

 3

2 = 3 + 5

 3

3 = 7 + 9 + 11

 3

4 = 13 + 15 + 17 + 19

 3

5 = 21 + 23 + 25 + 27 +29

etcetera

Note that a number to the third power can always be written as
a number of consecutive odd numbers where the number of odd
numbers is equal to the number that has to be risen tot the third
power.

Exercise

Write a program to test the above stated rule.

Here follows another way of determining the square of a
number: If a number is bigger than 15 and it ends with “5” then
take the digits preceding the 5, add 1 to them and multiply it
with the digits preciding the 5 . Multipy the outcome by 100
and add 25 to the result.

2
For example: we will calculate 125

First take 12 as this preceeds the 5. Add 1 so now we have 13.
Multipply 13 with 12 which gives 156; mulitplied by 100 gives
15600; after adding 25 to this the result is 15625.

In this program we cannot use the function “val” to convert a string to a
number as the string will contain more than one digit. In such a case
“Cint can be used (convert integer):
input "Please, enter a number", letterSTR
number = Cint(letterSTR)

Write a program to test the rule.

We write now a number as getal 5. So 125 can be written as 12 5 and we call 12 “getfirst”

In a formula:
 2

getal = (getfirst + 1) * getfirst * 100 + 25

31

Solution to the first problem. We write first a formula.
Suppose we want to calculate 6 to the third power. The rule
states the outcome is an additition of six odd numbers. We
must now state were these six odd numbers start. It is the
number that follows after the first 1 + 2 + 3 + 4 + 5 = 15 odd
numbers. As there is always an even number in between we
know now that it is the odd number following 15 * 2 = 30. So
we start adding 6 odd numbers starting at

30 + 1 = 31. Then the outcome is 31 + 33 + 35 + 37 + 39 + 41 = 216

Write now the program to test this rule and then look at “nikom”.

The solution to the second problem is stored as “calcit”.

Introduction to forms
Until now we have only paid attention to the basics of Kbasic
and its procedural aspects. Now it is time to be introduced to
the instructions of Kbasic that make it possible to use “forms”,
your own windows, and its event driven aspects. To do so we
will make some of the programs developed in part one event
driven. What characterisis Kbasic?

Kbasic uses windows, also called Forms.

Kbasic programs are event - driven.

Earlier the way a program is developed was called the “top down
approach” and the way of ordering the subroutines “structured
programming”. We used “Files” to store and execute our code. From
now on we will still write structured code but the way a program is
functioning when it is a “Project” is not top down but “event
driven”. It means the program's execution depends on the actions
taken by the user, such as clicking the mouse or using the keyboard.
So the next step is to restructure the programs written in part one.
First we determine what actions the user is allowed to take.
Remember once your application is running he sees only your form
as a window. Some of these actions are: clicking the buttons and
entering text.

For those who skipped the first part of this tutorial because they think
they have sufficient knwledge of the language we show which steps to
take before inserting code.

When starting basic the following screen is displayed;

Depending on the actions you took earlier you click the appropriate
button.

32

The nex screen is displayed:

An overwhelming amount of menu itmes and icons. They will be
explained as we proceed with the tutorial.

We open a new project, this time we will choose “Project – New Form” as shown below.

After clicking “Form” the next window opens:

 As has been explained in the firt part of this tutorial you must get accustomed to the fact that
Kbasic will accompany your actions with providing messages considered worthwile. So when you
click “OK” the next message is:

33

Interesting, but not yet enough as the next message is:

Indeed, let's start now so we give the project a name, if considered necessary we change the path by
clicking the button with the three blue dots. The project type we leave as proposed: “Empty
Project”. This done we click “Create Project. So this information is stored but we again get a
message:

Yes, we know and did it purposely. So we click “OK” and we are confronted with:

34

Yes, we again agree, let's create a new form file, so we click “OK” and the next window opens:

To be able to run the program described here it is obligatory to enter as name “Form1”. The name will
displayed at the top of the new Form. Click “OK”.

35

And here it is the window with the form we can work upon. We will put some items on this form. To get a list of these
items we click once on the form and the list appears:

We will put two command buttons on the screen, one to display the square and the other to exit the application.
Furthermore we will create room for the square by clicking the item “picture”. First we put a button on the form by
moving the mouse to “CommandButton” and left click once. (If you click twice you get a message telling you what to
do) The text “CommandButton” will become blue. We move the mouse on the form somewhere an click again.

36

Now the button in its smallest size becomes visible:

(If you made a mistake you can remove the item by right clicking the mouse and choose “Select all”. Then after you
press the key “Del” the item will be deleted. If you want to delete more than one item, press delete repeatedly.

Now you can stretch this buttom in the customary way. After that we will change the text to “show square”. To do so
we choose in the Menu “Property Window as shown below.

And at the right side of the window:

37

we scroll “special” down to change “caption”:

to “.Show square”. There are more items we can give a value, but for the moment we only change the color of the
button by scrololing further down until we find “font color”. If we click the following window opens enabling to
choose a color:

38

We can do the same for the background. After inserting an “ImageBox” our form is now:

very funny but we want something else.

When clicking “View” there are two items we can choose: “Form” and
“SourceCode”. You can choose whether you want to work on the Form
or the program code by clicking the appropriate one. We chose
“SourceCode” and type:
Private Sub CommandButton1_OnEvent()
 ImageBox1.Background = "c:\$AVG\001.jpg"
End Sub
Private Sub CommandButton2_OnEvent()
 end
End Sub

If you have chosen View – Form you can inspect and change if
necessary the properties of your application. Be sure that the Name of
the Imagebox is indeed “ImageBox1”, that the names of the buttons are
“CommandButton1” and “CommandButton2” and that the picture
mentioned between the quotes exixts. Earlier the “Property Window”
has been discussed already. The result could be as shown below. I am
sure you can produce something better.

The next application will show a few more instructions to manipulate
images. We start with a form containing three buttons which are:
movebtn, showbtn and exitbtn. When the form is ready we load the
picture by choosing the property window and then typing after “Enabled
Image” where the picture is located. See the picture below.
As an example of the code involved look at the routine below:

Private Sub DiamondQueen_OnEvent()
DiamondQueen.X = 300
DiamondQueen.Y = 200
End Sub
The line “DiamondQueen.X = 300” is pronounced as “DiamondQueen her

39

X is three hundred”. The character “X” following the dot described the
X-coordinate, where the queen will be placed. Has it been for example
the SpadesKing then the dot would have been pronounced as “his”.

The picture of the queen has to inserted by typing after “Enabled
Image” the location as shown below:

After that has been done the form should look like:

Here follows the complete listing of this small demo:

Sub showbtn_OnEvent()
'show image
DiamondQueen.visible=true
End Sub
'
Private Sub DiamondQueen_OnEvent()
DiamondQueen.X = 300
DiamondQueen.Y = 200
End Sub
'
Private Sub movebtn_OnEvent()
'move image
DiamondQueen.X = 400

40

DiamondQueen.Y = 150
End Sub
'
Private Sub exitbtn_OnEvent()
End
End Sub

As is clear form the code provided you can move the picture in this
demo by clicking a button or the picture. It depends on the application
what to do with a picture.

Experiment with the code for picture manipulation to get accustomed to
it.

Our next application will be the “adres” one. By developing it we will
learn about a few other control items. First we design our window:

Now that the desing is ready we implement it in Kbasic. To do so
create a new project. As we anyhow willl use a “form” we click “Form” as
shown below.

We will get a message telling us to creat a project first. But after you click
OK you can proceed in the usual way, dont forget to enter as name for the
form “Form1”. That form will be visible together with the « toolbox « as
shown below:

41

We click the item « Label » as it will be the first item we place on our
form. When the toolbox covers the form just move it to the right. Then
press the left button of the mouse at a convenient place of the form and
release the mouse. If this position is not the right one you can later
adjust it. The form should now look as:

Now place the cursor on « Label1 » and click the right mouse button
and click “Copy” as shown below:

After you clicked “Copy” do the same for “Paste” as many times as you need
labels. For this application we need four: name, street, city and telephone.

We click the menu item “View” and then chose “Property Window”. The items
we change will be discussed now. If the slider is not in its upmost position move
it upwards so the first items become visible.

We will now adjust the first label under the condition that we had chosen it.
When you click in the form another item the property window changes
accordingly. In “Special” we change the caption. It is good practice to end the
name with « lbl » so we are sure when inserting code it is a label we are
handling.

42

If we click the small “+” sign we can see the content in a separate window. We move down in the “Property window”
to “Property (Control)” and change the aspect of the label. Here are set Fontname: courier New, Fontsize 16, Bold
true, Fontcolor and Background color.

You only need to type the font size. Fontname you can choose from a list.
Bold, italic and underscore you set to true or false by clicking:

 The result for this label is:

43

Do the same for the other labels: street, city, and telephone.

We discuss a few other items: In “Main” of the “Property window”
“Visible is set to “false” for this labelbecause we want it to become
visible after clicking the button “show”. This is done for all labels.

X, Y, Width and Heigt speak for itself, the x and y coordinates are
shown. You can change the coordinates. If for example coordinate
Y is changed. the label is moved upwards a little bit and will be
shown immediately in the form.

If you don’t want the users of your program to tamper with the
window of your appication, the items displayed below should be
as:

Visible must remain true of course.
The butttons should be visible otherwise the user can not invoke an
action.

We have aleady prepared a nice button image with our paint program
that you can use in your applications

We are finished with the form part of our program, so now the code
has to be entered. We click on the form outside he labels and button or
we press the key “F11” or we chose menu item View and chose
“Source code”, or lastly we click the approriate left or right item as
shown below, so possibilities enough.

Private Sub CommandButton1_OnEvent()
 nameLbl.visible=true
 streetLbl.visible=true
 cityLbl.visible=true
 phoneLbl.visible=true
End Sub
'
Private Sub CommandButton2_OnEvent()
 end
End Sub

Actually we need only to enter the code between “sub” and “end sub”
as when you click the buttons on your form sucessivly Kbasic will prepare

44

the event-subroutine for you.
It is a good idea to save our work this far by clicking “save all” in the File menu.
Always close a project first before opening another to keep your workspace tidy!

Run the program and admire your Kbasic program.

Editing your program
Let us practise with a small program. Every serious course about
programming should discuss the « hello world » program. So below it
is, but unfortunatelyit contains an error. It needs improvement. Please
copy it to a clean slab. The correct program should show:

Prepare this application and click the button “show text” to enter code
between “sub” and “end sub”. Unfortunately the text is erronous:

 helloworldLbl.visible=tru

Enter with the error to see the result.

Furthermore the line containing the error is highlighted:

The error message says “tru” is not declared. It was not our intention to
introduce a variable of that name, so the error is in “tru”. It should be
written as “true”.

Correcting an item on the form
If you want to make corrections to an item on the form you click it once
and the item will be selected. Clicking it twice will show its code.

45

Suppose you want to look at the item but it is hidden behind another
one. You can do it easily as indicated below:

You can click bring to back the item not wanted until the one you want
to look at appears.

Debugging
Look at the example “rude”. When you run this code you will notice
that it does not function as intended. So something is wrongly coded. In
a simple program as this it is not difficult to find what is wrong, but it is
used to explain how to debug in Kbasic. Try to find the bug now by
running the program, but do not inspect the code as we will detect the
bug by using the debugger. So take a look and copy the program “rude”
as “newfile”.

When entering 5 and 7 for example, the answer should be that 5 is lower
than 7. Perhaps there is something wrong with the code of the subroutine
“lower_higher” so we wil insert a breakpoint at the instruction of its call.
To do so we move the crusor to that line and click key “F9” or follow whas
been shown below:

after that the breakpoint is indicated as follows:

46

Then start the program by clicking “Run in Debug” as shown below:

When the breakpointis reached information will be displayed at the bottom
of the sreen, when “7” and “3” were typed a s hown:

We continue single-stepping by pressing key “F8”. Now it becomes clear
that the wrong subroutine was called. The subroutines “lower” and
“higher” should be exchanged or the sign “>” should be reversed.

Note that usually you cannot correct code as long as the program is
running. It is therefore essential to stop the program.

Sometimes it is inconvenient to use the debug option as it is not
possible to debug and at the same time see on the screen what happens
with the form. In such a case it might he handy to insert a message
instruction. See the piece of code below:

MsgBox("price1= " + price1)

When the line containing this instruction is executed the result is:

47

under the assumption that “12” was typed as price1.

As has been said you can continue debugging by clicking the F8 key.
Unfortunately that does not function when another program, for example
a text-checquer is running and uses the same key.

Save what you have done so far by clicking “Save all”.
Suppose you are happy with the program you have written and want so
send it to a friend, but you don't want to send the source code, only a
version of the program he can run. In that case you have to “build” as it
is called, code: an executable version of your program. To do so you
open the menu item “debug” and choose the line “Build”. But be aware
that this funtions only if you bought Kbasic,and registered, of course!

Listings K7Basic:

square1:
square

end

'
sub square
horizontal
vertical
vertical
vertical
horizontal
end sub
'
sub horizontal
print "---------"
end sub
'
sub vertical
print "| |"
end sub
'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 emptyline:

' the subroutine empty line draws
'an empty line
sub emptyline
print " "
end sub
'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

adres1:

' this program prints an address
dim personSTR as string
dim streetSTR as string
dim citySTR as string
dim landline as integer
address
terminate
End
'
sub address
person

48

city
street
telephone
showAddress
end sub
'
sub person
personSTR="Emilie T. Sagario"
end sub
'
sub street
streetSTR="Adamville Compound"
end sub
'
sub city
citySTR="Marigondon Lapulapu City"
end sub
'
sub telephone
landline = 95478476
end sub
'
sub showAddress
print personSTR
print streetSTR
print citySTR
print "tel " +landline
end sub
'
sub terminate
print " "
print "done"
end sub

'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

price1:

Dim price As Short
Const addition As Short = 2
Dim priceSTR As String
'
newprice
end
'
Sub newprice
ask_price
calculate
show_price
End Sub
'
Sub calculate
price = price + addition
End Sub
'
sub ASK_PRICE
input "Enter a price"; priceSTR
price=val(priceSTR)
end sub
'
Sub show_price()
print "the new price = " + price
End Sub
'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

price2:

dim price1 as integer
dim price2 as integer
dim priceSTR as string
'
compare_prices
end
'
sub compare_prices
ask_prices
lower_higher
terminate
end sub
'

49

Private Sub lower_higher
If price1 < price2 Then
lower
Else
higher
End If
End Sub
'
Private Sub lower
print "price 1 is lower than price 2"
End Sub
'
Private Sub higher
print "price 1 is higher than price 2"
End Sub
'
Sub terminate
print ""
input "Enter a character to stop";priceSTR
price1 = val(priceSTR)
End sub
'
sub ask_prices
input "Enter a price";priceSTR
price1 = val(priceSTR)
input "Enter another price";priceSTR
price2 = val(priceSTR)
end sub

'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

price3:

dim price as integer
dim priceSTR as string
'
determine_prices
end
'
sub determine_prices
ask_price
calculate
terminate
end sub
Private Sub calculate
If price <10 Then
higher1
else
If price > 25 Then
higher5
Else
higher2
End If
end if
End Sub
'
Private Sub higher1
price = price + 1
End Sub
'
Private Sub higher5
price = price +5
End Sub
'
Sub higher2
price = price +2
End Sub
'
Sub terminate
print "The new price is: " + price
print ""
input "Enter a character to stop";priceSTR
price = val(priceSTR)
End sub
'
sub ask_price
input "Enter a price";priceSTR
price = val(priceSTR)
end sub

'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

50

manyifs:
Dim price As integer

Dim priceSTR As String
much_ifs
end
'
Sub much_ifs
' this program accepts a price between 0 and 10
Convert
End
End Sub
'
Sub Convert
What_Price
Determine
End Sub
'
Sub What_Price
input "Please, enter a price between 0 and 10"; priceSTR
price = val(priceSTR)
End Sub
'
Sub Determine
if price = 0 then
print "I said between zero and ten!"
else
if price = 1 then
print "The price is one"
else
if price = 2 then
print "The price is two"
else
if price = 3 then
print "The price is three"
else
if price = 4 then
print "The price is four"
else
if price = 5 then
print "The price is five"
else
if price = 6 then
print "The price is six"
else
if price = 7 then
print "The price is seven"
else
if price = 8 then
print "The price is eight"
else
if price = 9 then
print "The price is nine"
Else
print "The price must be < 10"
End if
End if
End if
End if
End if
End if
End if
End if
End if
End if
End Sub
'

'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

whichar:
dim value as short = 12
dim letterSTR as String
dim new_letterSTR as String
'
convert
print""
print "done"
end
'

51

Sub convert
Ask_char
Determine()
End Sub
'
Private Sub Determine
If letterSTR <> "0" Then
value = Asc(letterSTR)
value= value-96
new_letterSTR = Chr(value + 1)
Print "This is letter " + value + " of the alfabet"
Else
Print "this was a zero so the program ended"
end
End If
End Sub
'
sub ask_char
input "Enter a character"; letterSTR
end sub

_ __ _ _
nexchar:
dim value as short = 12
dim letterSTR as String
dim new_letterSTR as String
'
convert
print""
print "done"
end
'
Sub convert
Ask_char
Determine()
End Sub
'
Private Sub Determine
If letterSTR <> "0" Then
value = Asc(letterSTR)
new_letterSTR = Chr(value + 1)
Print "The next letter of the alfabet is: " + new_letterSTR
Else
Print "this was a zero so the program ended"
end
End If
End Sub
'
sub ask_char
input "Enter a character"; letterSTR
end sub

'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
charfuncs
Dim str As String = "The quick brown fox jumps over the lazy dog."

Dim str2 As String = str
Dim result As String
result = left(str, 19)
print result
result = right(str, 4)
print result
result = Mid(str, 5, 15)
print result
result = Mid(str, 1, 30)
print result
'Mid$ in some old version of
'E.G. Mid$(str,41,3)="cat" would replace dog with cat.
'The string.Replace is okay for a single instance of a word.>>
str = str.Replace("dog", "cat")
print str
'It is NOT okay where two of the same word exist.>>
str = str.Replace("cat", "the")
'Now we have two of the word "the"
str = str.Replace("the", "very")
print str
'Reset original string "str" to the original string.
str = str2
print str
'Same as Mid$(str,5,5)="smart"
'The 2nd "5" is not needed as the FUNCTION uses the String.Length
str = Replace(str, 5, "smart")

52

print str

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
while:

dim value as integer

dim new_letterSTR as String
dim letterSTR as String
'
convert
end
'
Private Sub convert
While letterSTR <> "0"
Ask_char
Determine()
End While
End Sub
'
sub determine
value = Asc(letterSTR)
new_letterSTR = Chr(value + 1)
Print "The next letter of the alfabet is: "+ new_letterSTR
end sub
'
sub ask_char
input "Enter a character"; letterSTR
end sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
chnot
dim value as short = 5
dim letterSTR as String
dim new_letterSTR as String
'
convert
print""
print "done"
end
'
Private Sub convert
Do Until value = 0
ask_char
Determine
Loop
End Sub
'
Private Sub Determine
If letterSTR <> "0" Then
value = Asc(letterSTR)
new_letterSTR = Chr(value + 1)
Print "The next letter of the alfabet = " + new_letterSTR
Else
Print "this was a zero so the program ended"
end
End If
End Sub
'
sub ask_char
input "Enter a character"; letterSTR
end sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

pricewithifs

dim price as short = 5

dim priceSTR as string
Convert()
End
'
Sub Convert()
do until price = 0
What_Price()
Determine()
Loop
Print "That is it, done"
End Sub
'

53

Sub What_Price()
Input "Please, enter a price between 0 and 10"; priceSTR
price=val(priceSTR)
End Sub
'
Private Sub Determine()
If price = 0 Then
Print "this was a zero so the program ended...."
'End
Else
If price = 1 Then
print "The price is one"
Else
If price = 2 Then
print "The price is two"
Else
If price = 3 Then
print "The price is three"
Else
If price = 4 Then
print "The price is four"
Else
If price = 5 Then
print "The price is five"
Else
If price = 6 Then
print "The price is six"
Else
If price = 7 Then
print "The price is seven"
Else
If price = 8 Then
print "The price is eight"
Else
If price = 9 Then
print "The price is nine"
Else
If price > 9 Then print "The price should be one digit only!!!!!"
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End Sub

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
testchar with value=0

dim value as short = 0

dim new_letterSTR as String
dim letterSTR as String
'
convert
'
Sub convert
Do Until value = 0
Ask_char
Determine()
Loop
End Sub
'
Private Sub Determine
If letterSTR <> "0" Then
value = Asc(letterSTR)
new_letterSTR = Chr(value + 1)
Print "The next letter of the alfabet is: " + new_letterSTR
Else
Print "this was a zero so the program ended"
end
End If
End Sub
'
sub ask_char
input "Enter a character"; letterSTR
end sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

54

selcas
Dim price As Short = 8

dim priceSTR as string
Dim a As String
' this program accepts a price between 0 and 10 Dim price As Short
Convert
End
'
Sub Convert
What_Price
Determine
End Sub
'
Sub What_Price
input "Please, enter a price between 0 and 10";priceSTR
price = val(priceSTR)
End Sub
'
Sub Determine
Select Case price
Case 0
print "I said between zero and ten!"
Case 1
print "The price is one"
Case 2
print "The price is two"
Case 3
print "The price is three"
Case 4
print "The price is four"
Case 5
print "The price is five"
Case 6
print "The price is six"
Case 7
print "The price is seven"
Case 8
print "The price is eight"
Case 9
print "The price is nine"
Case Else
print "The price must be < 10"
End Select ' price

End Sub
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

tennum

Dim I, max, number[10] As Short

Dim cipherSTR As String
'
maximum
'
Sub maximum
getnumbers
decide
End Sub
'
Sub getnumbers
Dim cipher As Short
For I = 1 To 10
print "Enter number"
input "cipher = "; cipherSTR
cipher=val(cipherSTR)
number(I) = cipher
Next I
End Sub
'
Sub decide
Dim cipher, oldcipher, maximum As Short
oldcipher = 0
For I = 1 To 10
cipher = number[I]
If cipher > oldcipher Then
max = cipher
oldcipher = cipher
End If
Next I

55

print ""
print "The maximum is " + max
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

funcsquare
' this program accepts a digit and prints its square

DIM letterSTR as string
DIM value as Integer
Convert()
End
'
Function square(ByVal n as Integer) as integer
Return n * n
End Function
'
Private Sub Convert()
Ask_number()
Determine()
End Sub
'
Private Sub Ask_number()
Input "Please, enter a number";letterSTR
End Sub
'
Private Sub Determine()
value = val(letterSTR)
print "the square is: " + square(value)
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

muchifs
Dim price As integer

Dim priceSTR As String
much_ifs
end
'
Sub much_ifs
' this program accepts a price between 0 and 10
Convert
End
End Sub
'
Sub Convert
What_Price
Determine
End Sub
'
Sub What_Price
input "Please, enter a price between 0 and 10"; priceSTR
price = val(priceSTR)
End Sub
'
Sub Determine
if price = 0 then
print "I said between zero and ten!"
else
if price = 1 then
print "The price is one"
else
if price = 2 then
print "The price is two"
else
if price = 3 then
print "The price is three"
else
if price = 4 then
print "The price is four"
else
if price = 5 then
print "The price is five"
else
if price = 6 then
print "The price is six"
else
if price = 7 then
print "The price is seven"

56

else
if price = 8 then
print "The price is eight"
else
if price = 9 then
print "The price is nine"
Else
print "The price must be < 10"
End if
End if
End if
End if
End if
End if
End if
End if
End if
End if
End Sub
'

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

fadres1
Dim lineSTR As String

File.Create("D:\adres.txt")
OPEN "D:\adres.txt" FOR OUTPUT AS #1
lineSTR= " naam en adres "
print lineSTR
print #1,lineSTR
'print #1, "|"
input "name"; lineSTR
print lineSTR
print #1,lineSTR
print #1, "|"
input "Enter adres"; lineSTR
print lineSTR
print #1,lineSTR
print #1, "|"
input "Enter city"; lineSTR
print lineSTR
print #1,lineSTR
print #1, "|"
input "country"; lineSTR
print lineSTR
print #1,lineSTR
print #1, "|"
input "landline"; lineSTR
print lineSTR
print #1,lineSTR
print #1, "|"
print #1, " "
Print "done"
Close #1
end

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

squareswithoutfornext
Dim number As Short

compute
End
Sub compute
number = 2
Print "The square of two is ", number * number
number = 3
Print "The square of three is ", number * number
number = 4
Print "The square of four is ", number * number
number = 5
Print "The square of five is ", number * number
number = 6
Print "The square of six is ", number * number
number = 7
Print "The square of seven is ", number * number
number = 8
Print "The square of eight is ", number * number
number = 9

57

Print "The square of nine is ", number * number
number = 10
Print "The square of ten is ", number * number
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

fibonacci
Dim month as integer = 0
dim youngrabbits, grownuprabbits, notyet As integer
Dim previous as integer
Dim a As String
'
Fibonacci
End
'
Sub Fibonacci
youngrabbits = 1
Do Until month = 13
increment
Loop
print " "
print "This ends the Fibonacci program"
End Sub
'
Sub increment
month = month + 1
previous = month - 1
If month > 1 Then
Print "in month " + previous + " there are "+ grownuprabbits+ "rabbits"
End If
grownuprabbits = youngrabbits + notyet
notyet = youngrabbits
youngrabbits = grownuprabbits
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

erathos
'the sieve of Erathosthenes

'this program sieves the numbers 1 to 100 so only primes remain.
Dim number[100]
DIM I as integer
'
Eratos
print ""
print "this ends the sieve program"
End
'
Sub Eratos
fillarray
sieve
showresult
End Sub
'
Sub fillarray
For I = 1 To 100
number[I] = I
Next I
End Sub
'
Sub sieve
Dim thisnumber, rest, I As Short
For I = 1 To 100
thisnumber = number[I]
rest = thisnumber Mod 2
If rest = 0 Then
number[I] = 0
End If
Next I
For I = 1 To 100
thisnumber = number[I]
rest = thisnumber Mod 3
If rest = 0 Then
number[I] = 0
End If
Next I
For I = 1 To 100
thisnumber = number[I]
rest = thisnumber Mod 5

58

If rest = 0 Then
number[I] = 0
End If
Next I
For I = 1 To 100
thisnumber = number[I]
rest = thisnumber Mod 7
If rest = 0 Then
number[I] = 0
End If
Next I
End Sub
'
Sub showresult
Dim thisnumber As Short
For I = 1 To 100
thisnumber = number[I]
If thisnumber <> 0 Then
print "number " + thisnumber + " is a prime"
End If
Next I
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

compareprices:
dim price1 as integer
dim price2 as integer
dim priceSTR as string
'
compare_prices
end
'
sub compare_prices
ask_prices
lower_higher
terminate
end sub
Private Sub lower_higher
If price1 < price2 Then
lower
Else
higher
End If
End Sub
'
Private Sub lower
print "price 1 is lower than price 2"
End Sub
'
Private Sub higher
print "price 1 is higher than price 2"
End Sub
Sub terminate
print ""
input "Enter a character to stop";priceSTR
price1 = val(priceSTR)
End sub
sub ask_prices
input "Enter a price";priceSTR
price1 = val(priceSTR)
input "Enter another price";priceSTR
price2 = val(priceSTR)
end sub
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

bools:

Dim value As Short

Dim letterSTR As String
' this program accepts a number and prints some information
convert()
End
'
Private Sub convert()
Do Until letterSTR = "0"
Ask_Number()
Determine()

59

Loop
End Sub
'
Private Sub Ask_Number()
input "Please, enter a number ", letterSTR
End Sub
'
Private Sub Determine()
Dim number As Short
Dim compareTF As Boolean
number = val(letterSTR)
If number < 10 Then
compareTF = True
Else
compareTF = False
End If
If compareTF Then
print letterSTR + " < 10 "
Else
print letterSTR + " > 10 "
End If
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

price byval

Dim price As Integer

Dim newprice as Integer
Const addition as Integer = 2
'
addprice
end
'
Sub addprice
price = 25
calculate(price)
show_price
End Sub
'
Sub calculate(ByVal pretium)
newprice = pretium + addition
End Sub
'
Sub show_price()
print "the new price = " + newprice
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

rude
dim price1 as integer

dim price2 as integer
dim priceSTR as string
'
' compare_prices
ask_prices
lower_higher
terminate
'
Private Sub lower_higher
If price1 = price2 Then
equal
else
If price1 > price2 Then
lower
Else
higher
End If
end if
End Sub
'
Private Sub lower
print "price 1 is lower than price 2"
End Sub
'
Private Sub higher
print "price 1 is higher than price 2"
End Sub

60

'
Sub equal
print "price 1 is as high as price 2"
End Sub
'
Sub terminate
print ""
input "Enter a character to stop";priceSTR
price1 = val(priceSTR)
End sub
'
sub ask_prices
input "Enter a price";priceSTR
price1 = val(priceSTR)
input "Enter another price";priceSTR
price2 = val(priceSTR)
end sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ascfunction

' this program accepts a letter and prints its ascii value

Dim letterSTR As String
Dim value as short
main
end
'
Sub Main
Ask_character
Determine
End Sub
'
Private Sub Ask_character
input "Please, enter a letter"; letterSTR
End Sub
'
Private Sub Determine
value = Asc(letterSTR)
print "The ascii value = "; value
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

price with const

Dim price As Short

Dim priceSTR As String
Const addition As Short = 2
'
newprice
end
'
Sub newprice
ask_price
calculate
show_price
End Sub
'
Sub calculate
price = price + addition
End Sub
'
sub ASK_PRICE
input "Enter a price"; priceSTR
price=val(priceSTR)
end sub
'
Sub show_price()
print "the new price = " + price
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

askprice
' this program adds 2 pesos to a price of 25

61

Dim addition, price As Short
Dim priceSTR As String
'
newprice
end
'
Sub newprice
ask_price
calculate
show_price
End Sub
'
Sub calculate
addition = 2
price = price + addition
End Sub
'
sub ASK_PRICE
input "Enter a price"; priceSTR
price=val(priceSTR)
end sub
'
Sub show_price()
print "the new price = " + price
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

nikom
'this program prints a number to the third power
Dim number As Short
Dim i As Short
Dim j As Short
Dim letterSTR As string
Dim counter As Short
Dim remain As Short
Dim result As Short
ThirdPower()
print "done"
end
'
Sub ThirdPower()
WhichNumber()
Calculate()
End Sub
'
Sub WhichNumber()
input "Please, enter a number between 0 and 10 ",letterSTR
End Sub
'
Sub Calculate()
number = (asc(letterSTR))-48
If number = 0 Then
Print "Zero to the third power is zero, of course"
Else
For i = 1 To number - 1
counter = counter + i
Next i
counter = (counter * 2) + 1
For j = counter To counter + ((number * 2) - 1)
remain = j Mod 2
If remain <> 0 Then
result = result + j
End If
Next j
End If
Print"the third power = ", result
End Sub

Note: Use counter as variable name and not count!

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

calcit
' this program prints the square of a number
Dim number As Short, num1 As Short, num2 As Short, result As Short
Dim letterSTR As String
Dim okTF As Boolean
SquareIt()
Print ""
Print "Finished"

62

End
'
Sub SquareIt()
WhatNumber()
Calcit()
End Sub
'
Sub WhatNumber()
input "Please, enter a number ", letterSTR
number = cint(letterSTR)
End Sub
'
Sub Calcit()
If number = 0 Then
Print "The square of zero is zero, of course"
Else
If number > 15 Then
TestDigits()
Else
Print "The number must be > 15"
okTF = False
End If
End If
If okTF Then
Print "The square of " + number + " is " + result
Else
Print "This is not as intended"
End If
End Sub
'
Sub TestDigits()
Dim cipherSTR, leftnumSTR As String
cipherSTR = Str$(number)
If Right$(cipherSTR, 1) <> "5" Then
Print "The number must end with 5"
okTF = False
Else
leftnumSTR = Left$(cipherSTR, (Len(cipherSTR) - 1))
num1 = Val(leftnumSTR)
num2 = num1 + 1
result = (num1 * num2 * 100) + 25
okTF = True
End If
End Sub

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Advice given by the author of Kbasic:

 do not use () to access arrays, better use []

do not use ‘Option OldBasic’ or ‘Option VeryOldBasic’

do not use ‘On Error Goto’, better use ‘Try Catch’

do not use ‘Nothing’, better use ‘Null’

avoid the use of the data type ‘Variant’

do not use ‘class_initialisize’, better use ‘Constructor’, the same for the destructor

do not use ‘Call’ when calling a sub or function

do not use ‘Optional’ and ‘IsMissing’ with arguments in subs or functions, better use the

default value of an argument

always use ‘Do While…Loop’ and ‘Do …Loop While’ instead of the other loops

always write many comments in your source code

use in conditions ‘AndAlso’ and ‘OrElse’ instead of the binary operators ‘And’ and ‘Or’

avoid the use of ‘ByRef’ with primitive data types to get faster execution speed

do not use ‘Data’ and ‘Def*’, like ‘DefInt’

use enumerations instead of many integer constants

63

use constants instead of the use of numeric literals many times in your source code

avoid the use of ‘GoSub’, better use real functions or real subs

avoid the use of ‘GoTo’, better use loops and other control flow language elements
‘Let’ and ‘Set’ are not needed

use ‘For Each’, when it is possible

use ‘For i As Integer = 0 To 10 Next’, instead of declaring the counter variable outside of

the loop

name the variable names without giving them suffixes

always use () when you call a sub or function

Footnotes

1. www.kbasic.com
2. I am well aware that there are other ways to draw a square. Here the important point is learning modular,

structured programmming, not how to draw a square.

3. The adres programs are also included for educational purposes.

4. The different programs about character functions are adapted from a Forum contribution by John Antony
Oliver (Microsoft Community Contributor)

64

http://www.kbasic.com/

