
KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

The KBasic Book - Manual for development of
KBasic applications
First Edition
This edition applies to release 1.6 of KBasic and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product. The term “KBasic” as used in this publication refers to the KBasic product set (January
2007).

About this book
Welcome to The KBasic Book, your guide for the development of your KBasic applications. In this
book you find all necessary information to successfully build your KBasic programs. If you
complete the book, you will be able to write simple or complex KBasic programs with GUI-features
or in standard BASIC only, and with or without modern graphic user surface with forms. When you
begin with KBasic read the first chapters to learn about the programming language. Then try out the
examples of this book.

The principal purpose of this book is to to as a quick and practical reference during programming.
The less experienced KBasic programmer receives an extensive introduction to the programming
language KBasic. The object orientated and other features of KBasic are explained by numerous
examples of the most important elements of KBasic. You will find a complete reference of the
programming language inside KBasic’s integrated development environment (KBasic Software
Atelier) and therefore this book comes without a detailed reference. In the KBasic IDE you will find
the complete and detailed listing of all objects, their events and procedures, methods and
characteristics as well as a complete reference of all operators and commands. Apart from precise
syntax definitions you will find a detailed explanation of the available parameters in each case.

Why You Should Read This Book
This book is written both for people with some BASIC background knowledge and for absolute
beginners. Experienced Visual Basic developers should feel very comfortable. This book is meant
for people, who:

• want to learn a simple and powerful programming language for Linux and Windows or Mac
OS X;

• are experienced C/C++, Java, or Visual Basic developers, who want to switch to KBasic or
want to extend their * abilities;

• or have heard of a new programming language for Linux, Mac OS X, and Windows and
want to learn it.

This manual:

• is an asset for anyone doing serious development with KBasic;
• gives you a solid background in the fundamentals of KBasic; and
• takes you step by step through the features of the languages.

1 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Note Of Thanks
I am very grateful to all the people who helped me to complete this book. Special thanks goes to
Nadja, my girlfriend, and to everyone who bought KBasic Professional or has supported me
otherwise. A big thanks also goes to my parents.

About The Author
Bernd Noetscher is a software developer and the main developer of the KBasic programming
language. In his spare time he goes dancing, reads many books, and plays piano. He is also
interested in theatre and cinema. His private website is www.berndnoetscher.de

Supporter
Thank you! Nadja Hepp for proofreading this manual and for beta testing. Thanks to everyone on
the Internet who submitted corrections and suggestions, especically Christopher Scott Wyatt and his
wife Susan; you have been tremendously helpful in improving the quality of this book and I could
not have done it without you: Thank you all!

Give Us Feedback
Please help me improve this book. As the reader, you are the most important commentator and critic
of my book. We respect your opinion and would like to know what improvements we could make.
If you find an error in any example program or in the text, sent an e-mail to info@kbasic.com.
Thank you! Please note that we cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail we receive, we might not be able to reply to every
message. Our primary goal is the satisfied customer. In order to improve, we need your help. If we
have made any mistakes, please tell us.

Please write to info@kbasic.com – we would like to get positive comments, too. Thank you very
much.

New set of manuals about KBasic
KBasic was developed by KBasic Software and has aroused much Internet interest in the Internet
among businesses and the developers. In response, we documented this exciting new technology
with a set of new manuals. This series of manuals covers language references, introductory
volumes, API references, and advanced topics of programming in KBasic, such as databases and
networks.

Conventions used in this book / Way of writing
In this manual, normal text appears in a standard book font. Here is an example here: This is normal
text

Syntax and source code code appear in Courier New. For example:
Dim i As Integer

Important references and keywords are in italics: Arguments

2 / 87

http://www.berndnoetscher.de/
http://www.berndnoetscher.de/
http://www.berndnoetscher.de/

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Sources for further information
The manufacturer side of KBasic: www.kbasic.com Any information covering programming in
BASIC, including Internet archives about Visual Basic 6 for example.

Search the Internet using www.google.com to find more information.

Table of Contents
First Edition..1
About this book...1
Why You Should Read This Book..............1
Note Of Thanks...2
About The Author.......................................2
Supporter...2
Give Us Feedback.......................................2
New set of manuals about KBasic..............2
Conventions used in this book / Way of
writing...2
Sources for further information..................3
Introduction...6
The Big Mystery...6
What is a Computer Program?....................7
Programming Languages............................7
History of the Name....................................7
All Kinds of BASIC....................................8
Compilers and Interpreters.........................8
The Programming Process..........................8
Attack of the Bugs......................................9
How much KBasic do I need to know to use
it?..9
Something You Need to Know...................9
Introduction to the KBasic programming
language..10

What is KBasic?...................................10
Warning..10
Examples..10
KBasic is Object-Orientated................10
KBasic is Easy to Learn.......................11
KBasic is object-orientated..................11
KBasic is easy to learn.........................11
Interpreted..11
Stable..12
KBasic is Fast.......................................12
Why KBasic Succeeds.........................12
A Simple Example...............................13

Rapid application development................13
How Can I Get KBasic?...........................14
Installation of KBasic / Installation
description / System needs........................14

Starting KBasic...14
FAQ...14

What is the difference between
KBasic and Visual Basic 6?.............14
Can I import existing Visual Basic 6
programs automatically?.................15
On which platform is KBasic
available?...15

KBasic-Syntax..15
KBasic is not one programming language,
but three..16
Software development with KBasic.........16

Event controlled programming vs.
traditional programming......................17
How does an event controlled
application run?....................................17
Three Programming Steps....................17
Object orientated programming with
KBasic..17
Objects and classes...............................18
Inheritance of classes...........................19
KBasic-Syntax.....................................19

Statements and expressions......................19
Multi-Line statements...............................19
Variables and DataTypes...........................20

Declaration of Variables / Explicit
declaration..20
Declarations of variables in different
scopes...21
Declaration of variables automatically /
implicit declaration..............................23
Local variables.....................................23
Assignment-statement..........................23
Lifetime of variables............................24
Place of declaration..............................24

Data Types..25
Simple Data Types...............................25
User defined types................................26
Class types/Objects..............................26
Type Variant...26
Suffix of variables................................27

3 / 87

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.kbasic.com/
http://www.kbasic.com/
http://www.kbasic.com/

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Comments...27
Way of naming..27
Literals..28
Expressions...28
Constants...28
Operators and Operands...........................29

Operators for calculating......................29
Increment and Decrement....................30
Comparision...30
Logical operators (Boolean Operators)30
Other Operators....................................31
String concatenating.............................31
Operator order......................................32

Avoiding name collision...........................32
Editing source code...................................32
Working with objects................................32

Create new objects...............................33
Use of New...33
What happens when using 'New'?........33
Several Constructors............................33
'Null' (or 'Nothing')...............................34
Releasing objects automatically...........34
Releasing objects manually..................34
Create a class..34
Classes are not executed, but methods
are...35
Accessing objects.................................35
Accessing class-variables and instance-
variables...35
Class-methods and instance-methods. .36
Calling methods...................................36
References to objects...........................36
Copying objects....................................36
Comparision of objects........................36
Summary: Objects, properties, methods
and events...37

Creating object variables..........................38
Declaration of an object variable.........38
Assignment of objects to an object-
variable...38
Use current instance or object / Me /
Parent...39
Second time use of 'Parent'..................39
Casting of objects and simple data types
..40
Upcasting and downcasting implicitly.40
Comparing objects...............................40
Asking about objects and classes.........40
Subclassing and inheritance.................40

Constructor chaining............................41
The default constructor........................41
Hidden Variables..................................41
Hidden Methods...................................42
Overriding methods..............................42
Dynamic-searching of methods...........42
Calling an overrided method................42
Hiding data...44
Scope modifiers....................................44
Some tips for using scope modifiers....44
Abstract Classes and Methods.............44

Arrays..45
Different kinds of arrays......................45
Declaration...45
Getting lower and upper bound............46
Changing the lower bound...................46
Use of multidimensional arrays...........47
Save 'Variant'-values in arrays.............47
Change the size of a dynamic array.....48

Array-reset / array-delete.................48
Control of the program flow.....................48

Decisions..48
Single decision - If...............................49
IIf – short if..50
Select Case...50
Switch – short select case.....................51
Choose – short select case....................51
Unconditional jumping........................51
Loop-statements...................................52
For Next...52
Optimize For...Next-Loops..................54
Other kind of loops..............................54
Do While...Loop...................................55
Do...Loop Until....................................57
Do...Loop While...................................57
Do Until...Loop....................................57
While...Wend..58
While...End While................................58
Explicitly leave a loop..........................58
Explicitly test a condition....................58
Nested control structures......................59

Procedures...59
Sub-Procedure......................................59
Function-Procedure..............................59
Arguments..60
Named and optional arguments............60
Writing function-procedure..................61
Call of sub-procedures and function-
procedures..62

4 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Add comments to a procedure.............62
Hints for calling procedures.................62
Leave procedure...................................63
Writing recursive procedures...............63
Release unused variables.....................64
Overloading of procedures...................64
Event procedures..................................64
General procedures..............................64
Functions..64
Data Types of functions.......................64
Function Return....................................65

Properties..65
Conversion..66
Modifiers / Scopes....................................66

Local scope..66
Private module scope...........................67

User Defined Data Type (Type...End Type)
..67
Enumeration (Enum...End Enum)............68
Classes..68

Classes unlike procedures are not
executed...68
Edit Class...68

Module..71
Global Modules....................................72
Modules are not executed, unlike
procedures are......................................72

Error handling...74
Exceptions..75
Finally..75
Declaration of exceptions.....................75
Define and generate exceptions...........76
Exception at the end of a procedure.....77

The KBasic development environment.....78
Windows..78
Toolbars..78
Editor..78
Debugger..78
Classes and objects of KBasic.............78
Projects...79
Forms...79
Central meaning of forms....................79
Procedure in forms...............................79
KBasic searches the current form
module at first......................................79

Compatibility VB6 = KBasic....................80
Migrating from VB6 to KBasic............80

KBasic's virtual machine..........................80
Appendix...81

Argument..81
Arithmetic Operations..........................81
Array..81
BASIC..81
Bit...81
Boolean..81
Boolean Expression..............................81
Branching...81
Breakpoint..82
Byte..82
Compiler...82
Concatenate..82
Constant...82
Data Type...82
Debugging..82
Decrement..82
Double..82
Empty String..82
Event..83
Executable File.....................................83
File...83
Floating Point.......................................83
Form...83
Function...83
Global Variable.....................................83
Increment...83
Infinite Loop..83
Initialize...83
Integer..83
Interpreter...84
Literal...84
Local Variable......................................84
Logic Error...84
Logical Operator..................................84
Long...84
Loop...84
Loop Control Variable..........................84
Machine Language...............................84
Mathematical Expressions...................84
Method...84
Numerical Literal.................................85
Numerical Value...................................85
Object...85
Order of Operations.............................85
Parameter...85
Procedure...85
Program..85
Programming Language.......................85
Program Flow.......................................85

5 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Property..85
Read-Only Property.............................86
Relational Operator..............................86
Return Value...86
Runtime Error......................................86
Scope..86
Single...86
Source Code...86

String..86
String Literal..86
Subprogram..86
Unconditional Branch..........................86
User Interface.......................................87
Variable..87
Variable Scope......................................87
Variant..87

Introduction
You heard probably already much about Kbasic and have probably downloaded the Personal
Edition of KBasic and played a little with the sample programs. Now you want to write your own
KBasic programs… Have you ever wanted to know how a computer program works? Did you ever
want to sit down at your keyboard and create digital magic on your computer’s screen? If so, there
might be a computer programmer somewhere inside you, waiting to get out.

You might have found computer programming not only intimidating but downright frightening. Do
you get new grey hairs every time you try to write a simple script file? If you feel this way, The
KBasic Book is here to prove that programming your computer is fun, rewarding, and not difficult.
Before you get started with developing computer programs, it might help to have a basic
understanding of what programming is all about. You probably have some ideas about what a
program is and how it works or you would not have gotten this book to begin with. After reading
this introduction, you may find that your knowledge about programming is good or you might
realize you know as much about programming a computer as you do about building a plane. In
either case, it is worth it…

The Big Mystery
The computer programming world is a well-kept mystery. If you have been using a computer for
any time at all, you will probably find this secret hard to believe. Computers are stupid. A computer
can do absolutely nothing on its own. Computes without programmers are as useless as cars without
gas. Computers can do only what they are told to do. This means computers can only do tasks that
humans already know how to do. So, why are computers are great? Computers are not smart but
they can perform endless calculations in seconds. Developers, of course, are the people who tell
computers what to do. That is not to say when you use your computer you are programming it. For
example, when you sit yourself down in front of a word processor and write a letter, you are not
giving commands to the computer. You are only using the commands contained within the program.
The computer program, which was written by a programmer, actually tells the computer what to do.

You probably use your computer for many activities besides word processing, such as organizing
data in a spreadsheet, or maybe even for playing computer games. In all those cases, you run a
program, which in turn provides instructions to the computer.

The bottom line is that if you want to give commands directly to your computer, you must learn to
write programs. Why You Should Learn to Program?

There are as many reasons for learning to program as there are people in the world. Only you know
what it is about computer programming that makes you want to learn it. Some reasons you may

6 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

want to learn programming for work or school are to:

• be able to write the programs you really need;
• learn more about how computers work;
• impress your friends or girlfriend or even boyfriend;
• You are looking for a fun and rewarding hobby

These all are good reasons. You might have a better one, but whatever your reason after you start
programming, you will find it can be fascinating, interesting, and addictive.

What is a Computer Program?
A computer program is a list of instructions telling a computer what to do. The computer follows
these instructions or commands, one by one, until it reaches the end of the program.

Each line in a computer program is usually a single command that the computer must do. Each
command does only a very small task, such as printing a name on the screen or adding four
numbers. When you put hundreds, thousands, or even hundreds of thousands of these commands
together, your computer can do great things: calculate mathematical problems very quickly, print a
document, draw pictures, or play SimCity.

As you see in the next paragraph, computer programs can be written in one of many different
programming languages.

Programming Languages
Computers do not understand German or English or any other human language. They cannot even
understand BASIC, the computer language upon which KBasic is based. Computers understand
only one thing, machine language, which is entirely composed of the numbers 1 or 0. Programming
languages like BASIC allow people to write programs in an English-like language. The BASIC
interpreter changes the program into machine language so the computer can understand it. KBasic
programs are a dialect of the BASIC computer language that was developed not to help computers,
but to help people make sense out of the numerical code machines use to function. KBasic replaces
many of the numbers used by machine language with words and symbols we can more easily
understand and remember. Moreover, KBasic enables a programmer to visually assemble a
program’s window from parts in a toolbox. It is much easier for you to communicate with your
computer as an software developer; instead of thinking as a machine you can think as an human
being.

History of the Name
Sometimes, you see the name of the BASIC language spelled with lowercase letters like this: Basic.
Even KBasic uses this spelling. However, BASIC actually started out as an acronym, which is why
you also see the name spelled in all capital letters. The BASIC acronym stands for Beginner’s All-
purpose Symbolic Instruction Code. A BASIC program uses symbols and words (and a few
numbers) that people can understand. How it is possible that the computer can understand and run
BASIC?

When you load KBasic you are also loading a compiler. A compiler is a special program that takes
the words and symbols from a Kbasic program and translates them into machine language the
computer can understand. Your computer would not have any idea what to do with your program
without the compiler’s interpretation of your programs. Many computer languages exist, including

7 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Java, C++ and BASIC. However, all computer languages have one thing in common: they can be
read by humans and therefore must be converted to machine language before the computer can
understand them.

All Kinds of BASIC
There are many versions of the BASIC language, of which KBasic is only one. Newer versions of
DOS came with QBasic. You can also go down to your local software store and buy Visual Basic.
All these software packages allow you to create computer programs with BASIC, but they all
implement the BASIC language slightly differently.

However, of the versions of BASIC mentioned here, KBasic enables you to write Linux or Mac OS
X applications in addition to applications for Windows.

Compilers and Interpreters
Some computer languages, such as some types of BASIC, convert a program to machine language
one line at a time as the program runs. Other languages, such as Java and KBasic, use a compiler to
convert the entire program all at once before the program runs. In any case, all programming
languages must be converted to machine language in order for the computer to understand the
program.

A compiler changes your program into an executable file that can be run directly, without a
compiler or interpreter. An executable program is actually a machine language program that is ready
for your computer to read and understand. With few exceptions, most computer programming
languages have a compiler. It can be difficult to distinguish between compilers and interpreters
because a few programs, such as Java and KBasic, are a mix of compiler and interpreter.

The Programming Process
Now that you know something about computer programs, how do you go about writing one?
Creating a computer program is easy, though it can be a long process. Writing a KBasic program
requires development steps similar to those you use when writing a paper or report. The following
list outlines these possible steps: Come up with a program concept and sketch out on paper how it
might look on the screen.

• 1.Create the program using KBasic’s toolbox and source code editor.
• 2.Save the program to disk.
• 3.Run the program and see how it works.
• 4.Fix programming errors.
• 5.Go back to step 2.

Most of the steps in the programming process are repeated over and over as errors are discovered
and corrected. Even experienced programmers cannot write error-free programs unless the program
is extremely short. Programmers often spend more time fine-tuning their programs than they do
writing them initially. It is important to do the fine-tuning, because we are not as logical as we like
to think. Moreover, our minds are incapable of remembering every detail required to make a
program run perfectly. Only when a program crashes or does something unexpected can we hope to
find errors hiding within code. Computer experts say there is no such thing as a program without
bugs. After you start writing full-length programs, you will see how true this statement is.

8 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Attack of the Bugs
Bugs are programming errors that stop your program from running correctly. Before a programmer
can release his or her program to the public, he or she must correct as many errors as possible.

Is Programming difficult?

After reading all that is involved in writing and running a computer program, you might be a little
uncomfortable. After all, you got this book, because it promised to teach you computer
programming in KBasic. No one warned you about such mysterious topics as machine language,
interpreters, compilers, and program bugs. Is programming easy or not? Well, yes and no.

It is easy to learn to write little programs with KBasic. The Kbasic language is logical, English-like,
and easy to understand. With only minimal practice, you can write many useful and fun programs.
All you need is: the time to read this book and the ambition to write a few programs of your own.
Actually, what you will learn in this book is enough programming for just about anyone who is not
planning to be a professional programmer.

However, if you want to make programming a career, you have much to learn that is not covered in
this introductory book. For example, consider a word-processing program such as OpenOffice,
which took dozens of programmers many years to write. To write such complex software, you must
have good knowledge of how your computer works. Additionally, you must have spent many years
learning the skills of professional computer programming.

Still, there is a lot you can do with KBasic whether you are interested in writing utilities, small
applications, or even computer games. And, step by step, you will discover programming in KBasic
is not as difficult as you might have thought.

How much KBasic do I need to know to use it?
It is possible to develop KBasic programs without having to write any lines of source code. There
are many places to obtain KBasic programs, such as books, the Internet, and even your friends and
colleagues. You can drop these programs into KBasic and have an application ready to use.
However, sometimes these programs need modifications and this is where real challenges to your
programming expertise occurs.

Something You Need to Know
Before you dig into writing your own programs with KBasic, it is important to know what computer
programs are and how they work. Such background knowledge will help you to understand why
KBasic does some of the things it does, as well as make it easier to locate errors in your programs.
You should remember the following points: A computer can do only what a human instructs it to do;
There are many computer languages and the language you learn in this book is a form of BASIC; A
computer program is a list of commands the computer follows from beginning to end; A BASIC
program must be converted to machine language before the computer can understand it. KBasic’s
compiler does this conversion; Writing a program is like writing a text document. You must write
several drafts before the program is complete and ready; and Programming with KBasic’s is as easy
or as difficult as you want it to be. You should have a basic understanding of object -oriented
programming such as C++. Many of the principles and concepts of KBasic are based upon those
found in C++. There are also some differences between KBasic and C++ that you should know
about as well. If you are using databases, a basic understanding of structured query language (SQL)
and client -server models is necessary to build more complex database-aware KBasic programs.

9 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Introduction to the KBasic programming language
Welcome to the KBasic programming language. This chapter is concerned with what exactly
KBasic is; why you should learn KBasic and what makes KBasic different from other programming
languages; first steps inside KBasic, which background knowledge is needed and some basic
knowledge; and how to write your first KBasic program.

What is KBasic?
KBasic is a powerful programming language designed to be intuitive and easy to learn. KBasic also
represents a further bridge between Linux, Mac OS X, and Windows. KBasic is a new programming
language, a further BASIC dialect related to Visual Basic 6 and Java. More precisely, KBasic is an
object-oriented and event-controlled programming language, developed by KBasic Software
(www.kbasic.com), and is designed particularly for the needs of GUI-developers and therefore
strenghens GUI-application development. C/C++ developers feel that BASIC is a beginner,s
language, but with KBasic you can write many applications that may otherwise have been written in
the more difficult C/C++ were it not for KBasic. KBasic is an easy, usable, object-oriented,
interpreted, stable, platform-independent, modern programming language. Briefly and well in a
sentence KBasic is a easy-usable, object-oriented, interpreted, stable, platform-independent, fast
and modern programming language.

Warning
In order to have compatibility to future version of KBasic, you should avoiding certain old elements
of the KBasic language, which are still supported for historical reasons. Use instead the modern
elements of the language. You can find more details in the respective help entries. Please consider
also the references to the migration from Visual Basic 6 at the end of this book. In addition, only the
new, current and modern language features are described in this book, since many language
elements are only supported for historical reasons by KBasic, e.g. ‘GoSub’, ‘DefInt’, ‘On Error
GoTo’ are outdated elements of the language and therefor are not described in this book.

Examples
The examples in this book are in English. KBasic’s Past, Present and Future KBasic was originally
developed as open source software. The project was started by Bernd Noetscher in summer 2000.
After many disappointments, due to lack of volunteer support, he decided to develop the
programming language as a commercial product for Linux, Mac OS X, and Windows. At present,
KBasic version 2.0 is under construction. Version 2 is more user-friendly, more efficient, and has
more programming libraries and new object-oriented features. What is still needed to know about
KBasic?

KBasic is Object-Orientated
As a programmer, you concentrate on the data and on the methods in your application - how to
manipulate the data, instead of thinking only in procedures. If you are familiar with procedural
programming in BASIC, you may think you have to change how you write your programs when
using KBasic. You can program further with procedures only. Once you learn how powerful this
new object-oriented paradigm is, you will see how easy it is to develop reusable complex
application programs clearly and modularly. KBasic is object-oriented regarding the binding to C++
programming libraries, or built in KBasic classes, with true inheritance. Contrary to other

10 / 87

http://www.kbasic.com/
http://www.kbasic.com/
http://www.kbasic.com/

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

programming languages, KBasic is designed from the beginning as an object-oriented programming
language. Most things in KBasic are objects; the simple data types, like numeric, strings, and
boolean values, are the only exceptions. Although KBasic is designed to look similar to VB6, notice
that KBasic avoids many problems of VB6.

KBasic is Easy to Learn
KBasic is an easy to use language, designed for rapid development and easy error tracing. KBasic is
modeled after standard BASIC, is syntax compatible to Visual Basic 6 (apart from the Visual Basic
components) and is therefore very familiar. KBasic contains object-oriented ideas of Java and C++,
whereby confusing elements were omitted. KBasic uses (as in Java) references instead of pointers
on objects. In addition the garbage collector manages completely automatically the memory
allocation as simply as possible for the programmer. You do not have invalid pointers and memory
leaks, instead you can spend your time in the development of your application’s algorithm and its
use. KBasic is actually a complete and an elegant programming language.

KBasic is object-orientated
That means for you as a programmer that you concentrate on the data and on the methods in your
application - how to manipulate the data, instead of thinking only in procedures. If you are familiar
with procedural programming in BASIC, you will probably get the conviction that you must change
the kind, how you write your programs, if you use KBasic. But you do not have to use it that way.
You can program further with procedures only. If you get to know with it, how powerfully this new
object-oriented paradigma is, you will get used to it, because you will see how easy it is to develop
re-useable complex application programs clearly and in a modular way. KBasic is object-oriented
regarding the binding to C++ programming libraries, or builtin KBasic classes, with true
inheritance. Contrary to other programming languages KBasic is designed from the beginning as an
object-oriented programming language. So most things in KBasic are objects; the simple data types,
like numeric, strings and boolean values, are the only exceptions. Although KBasic is designed in
such a way, that it looks similar to VB6, you will notice that KBasic avoids many problems of VB6
in an elegant way.

KBasic is easy to learn
KBasic is an easy to use language. A design aim of KBasic is the simple use. Fast development,
easier error tracing and easy to learn. KBasic is modelled after standard BASIC, is syntax
compatible to Visual Basic 6 apart from the Visual Basic components and is therefore very familiar.
Thus the migration is almost simply and fast. KBasic contains object-oriented ideas of Java and
C++, whereby confusing elements were omitted. KBasic uses (as in Java) references instead of
pointers on objects, in addition the garbage collector manages completely automatically the
memory allocation as simple as possible for the programmer. You do not have invalid pointers and
memory leaks, instead you can spend your time in the development of your application’s algorithm
and its use. KBasic is actually a complete and an elegant programming language.

Interpreted
KBasic produces pseudo code instead of machine code. In order to run a KBasic program you can
use the KBasic development environment (IDE) or the menu entry ‘Make Runtime’ (only in the
Professional version). KBasic is thus a interpreted programming language. KBasic pseudo codes is
an architecture-independent format: the code was designed to run programs efficiently on different

11 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

platforms.

Stable
KBasic is designed to write very reliable and durable software. Of course, KBasic does not
eliminate the need for quality control. It is still possible to write unreliable software. However
KBasic eliminates certain kinds of programming errors so that it is easier to write reliable software.
KBasic is a typed language, which enables KBasic to do very detailed examinations of the potential
type inconsistencies in your KBasic program. KBasic is more strictly typed than standard BASIC.
One of the most important characteristics regarding the reliability is the memory management.
KBasic does not support pointers, which excludes the danger of making memory useless and
overwriting data. Similarly, KBasic’s garbage collector prevents memory leaks and other malicious
errors with dynamic memory allocation and deallocation. In addition, the KBasic interpreter
examines at run time different things, e.g. whether arrays and strings are still within their borders.
The exception handling is another new possibility. An exception is a signal for a exceptional
program condition, which occurs like an error. When you use the try/catch/finally statements, you
can place all your error processing routines at one place, making it easier to manage and fix errors.

KBasic is Fast
KBasic is an interpreted programming language. Therefore, it will never be as fast as a machine-
code compiled language, like C. Actually, KBasic is 20 times slower than C. But instead of running
away, keep in mind this speed is fast enough for nearly all kind of GUI applications, which often
wait for the user to input something. When analyzing the power of KBasic, think about the
placement of KBasic between the other programming languages. On one end are high-level, full-
interpreted languages like PHP and UNIX-shells. These languages are very useful to create a draft,
but they are slowly executed. On the other end are the fully machine language compiled
programming languages. These languages provide extremely fast programs but are not very
portable or reliable. KBasic is in the middle of these languages. The performance of KBasic is much
better than high-level programming languages, but have the ease and portability of those languages.
Though KBasic is not as fast as a C compiled program, it is a platform-independent environment,
providing the ability to write stable programs for Windows, Mac OS X, and Linux.

Why KBasic Succeeds
Traditionally, programming languages have suffered from the attitude that you should abandon
everything you know and start from scratch with a new set of concepts and a new syntax, arguing
that it is better in the long run to lose all the old baggage that comes with it. This may be true in the
long run. However, in the short run, much of that baggage is valuable. The most valuable elements
may not be the existing code base, but instead the existing mind base. If you are a competent VB6
programmer and must drop everything you know about VB6 in order to adopt a new language, you
immediately become much less productive for many months, until your mind fits around the new
paradigm. Whereas if you can leverage off of your existing VB6 knowledge and expand upon it,
you can continue to be productive with what you already know while moving into the world of
object-oriented programming.

As everyone has his or her own mental model of programming, this move is messy enough as it is
without the added expense of starting with a new language. The problem with learning a new
language is productivity. No company can afford to suddenly lose a productive software engineer
because he or she is learning a new language. KBasic is very similar to VB6, not a completely new

12 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

syntax and programming model. It allows you to continue creating useful code, applying the
features gradually as you learn and understand them. This may be one of the most important reasons
for the success of KBasic. In addition, most of your existing VB6 code is still viable in KBasic.

A Simple Example
Enough! Now that you have an insight into what KBasic is all about, let us stop discussing abstract
phrases and instead study a KBasic code example. Here is the much loved favorite “Hello World”:
' program beginning

CLS
Print "Hello World!"
Print
Print
Print " / `._ . . _.' \"
Print " '.@ = `. \ / .' = @.'"
Print " \ @`.@ `. \ / .' @.'@ / "
Print " \;`@`.@ `. \ / .' @.'@`;/ "
Print " \`.@ `.@ `'.(*).'` @.' @.'/ "
Print " \ '=._`. @ :=: @ .'_.=' / "
Print " \ @ '.'..'='..'.' @ / "
Print " _@_.==.: = :.==._@_/ "
Print " / @ @_.: = :._@ @ \ "
Print " /@ _.-' : = : '-._ @\ "
Print " /`'@ @ .-': = :'-.@ @`'`\ "
Print " \.@_.=` .-: = :-. `=._@./ "
Print " \._.-' '.' '-._./ "
Print
Print "... you just did your first kbasic program!"

Input these lines into a new KBasic code window. After running it in KBasic you will see a nice
butterfly on your screen. Now let us go on to the next chapter.

Rapid application development
You can use KBasic for visual programming features to quickly develop KBasic applications. In the
Form designer you point and click to:

• Design the user interface for your program;
• Specify the behavior of the user interface elements; and
• Define the relationship between the user interface and the rest of your program

In addition to its visual programming features, KBasic gives you the ability to quickly complete
many tasks, including create new program elements. In KBasic, a program element is one of the
following:

• Project: the top-level program element in KBasic. A project contains classes, modules, and
forms.

• Form: the KBasic visual programming feature.
• Class/module: the KBasic language construct. Classes contain methods and other statements.
• Sub/function/method: the KBasic language construct.

Importing code from the file system and exporting code to the file system

KBasic gives you the programming tools that you need to develop industrial-strength code.

13 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Specifically, you can: Use the completely integrated visual debugger to examine code while it is
running; and Browse your code at the level of project, class, or method

How Can I Get KBasic?
KBasic Professional Version You can buy KBasic Professional. You can get it directly from its
maker www.kbasic.com, where you can purchase it for 24.95 Euro (inclusive shipping costs,
roughly $35 US Dollars). The buyer receives two program versions: one for Windows, one for Mac
OS X and for Linux; and a license, for Windows, Mac OS X and Linux and the right to write
commercial programs without paying fees. If you have questions, send an e-mail to:
sales@kbasic.com.

Installation of KBasic / Installation description / System needs
KBasic is easy to install and needs about 200 MB of space on your hard disk.

Officially supported are:

• Windows XP/2000/Vista
• Linux
• Mac OS X 10.2 and above

KBasic will not run on the following systems in the future: Windows 95/98/Me

You need at least 64 MB RAM and your CPU should run at least at 400 Mhz. We recommend a
screen resolution of 1024 x 768, 32bit, True Color

You need at least 64 MB RAM and your CPU should run at least at 400 Mhz. Screen resolution:
1024*768, 32bit, True Color

Starting KBasic
You can start KBasic by doing one of the following:

• For Linux, select KBasic on the desktop
• For Windows, select KBasic in the program menu
• For Mac OS X, select KBasic on the desktop

Now that KBasic is up and running, the main window of KBasic appears. Use this window to
access other windows, create program elements, and view the contents of program elements.

FAQ

What is the difference between KBasic and Visual Basic 6?

KBasic is very similar to VB6, making it easy for VB6 developers to learn. There are also some
important differences between KBasic and VB6, such as the pre-processor and the exception
handling. One of the main differences between KBasic and VB6 is that KBasic is a true object-
orientated programming language with the possibility to define classes, to inherit from them, and to
create objects from classes. KBasic contains all syntax elements of VB6 and supports controls and
other components similarly to VB6. Visual Basic 6 is fully supported as its syntax is fully
supported. Furthermore, KBasic provides additional object orientated features and extensions.

A KBasic program contains of one or more classes, modules, forms or only functions or subs. As in

14 / 87

http://www.kbasic.com/
http://www.kbasic.com/
http://www.kbasic.com/

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

VB6 it is possible to have a global namespace, global functions or subs, and global variables.
KBasic does not support a pre-processor, but this is planned for the future. (e.g. '#ifdef’ and '#if’).
Theoretically it is not needed because KBasic is a platform-independent programming language and
therefore there does not have platform-related dependence. Furthermore, the simple data types are
the same except their size might change. Changed sizes are: ‘Boolean’ is 1 Byte, ‘Integer’ is 32bit
and ‘Long’ is 64bit in KBasic.

Can I import existing Visual Basic 6 programs automatically?

KBasic will include a VB6-converter in the next major release of KBasic. Meanwhile you can
manually copy your files and open them in KBasic.

On which platform is KBasic available?

At this time, there exists versions of KBasic for Linux, Mac OS X, and Windows. Where can I find
more information about KBasic? Examples, documentation, and news? First read this book. You
can also get news and new information on www.kbasic.com. Many programming examples are
posted on the Internet. Visual Basic 6 websites or BASIC archives list useful program examples that
can be used inside KBasic with only minor changes.

KBasic-Syntax
The syntax of sub, function, or statement in the KBasic help entry shows all elements needed to
correctly use the sub, function, or statement. Example: Syntax of the MsgBox-Function

MsgBox(prompt[, buttons] [, title] [, helpfile, context])
Arguments listed inside brackets [] are optional. (Do not write these [] in your KBasic code). The
only argument, what you have to give the MsgBox-Function, is the one for the showing the text:
‘prompt.' Arguments for functions or subs can be used with the help of their position or their name.
In order to use the arguments defined by their position, you cannot ignore the position written in the
syntax. You must write them exactly in the same order they occur in the syntax. All arguments must
be separated by a comma. Example:
MsgBox("The answer is right!", 0, "window with answer")

To use an argument with its name, use the name of the argument and colon and equals sign (: and
the value of the argument. You can write these named arguments in any order you wish. Example:
MsgBox(title:="window with answer", prompt:="The answer is right!")

Some arguments are written inside {} in the syntax of functions or subs.

Option Compare {Binary | Text}

In the syntax of the ‘Option Compare’-statement: { } together with | means that one of the elements
must be written.(Do not write these { } in your KBasic code). The following statement defines that
text will be compared and sorted without case sensitive.
Option Compare Text

Syntax of the ‘Dim’-Statement

Dim VarName[([Indexes])] [As Type] [, VarName[([Indexes])] [As Type]] …

15 / 87

http://www.kbasic.com/
http://www.kbasic.com/
http://www.kbasic.com/

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Dim VarName[([Indexes])] [As Type] [, VarName[([Indexes])] [As Type]] … ‘Dim’ is a keyword in
the syntax of the ‘Dim’-Statement. The only needed element is VarName (the name of the variable).
The following statement creates three variables: myVar, nextVar and thirdVar. These variables are
declared as ‘Variant’-variables automatically (or ‘Double’ in ‘VeryOldBasic Mode’).
Dim myVar, nextVar, thirdVar

The following example declares a variable of type ‘String’. If you have declared the data type of the
variable explicitly, it will help KBasic to optimize the RAM-usage and will help you to find errors
in your code.
Dim myAns As String

If you want to declare many variables in one line, you should declare every data type of each
variable explicitly. Variables without declared data type get the default data type, which is ‘Variant’.
Dim x As Integer, y As Integer, z As Integer

X and y get in the data type ‘Variant’ in the following statement. Only z has the ‘Integer’ data type.
Dim x, y, z As Integer

You have to put () or [] (modern style), if you want to declare an array variable. The indexes of the
array are optional. The following statement declares a dynamic array named myArray.
Dim myArray(100)
Dim myArrayModernStyle[200]

KBasic is not one programming language, but three
Using one of the following commands you can switch KBasic modes:

If you want to use KBasic’s newest features (default), use

• Option KBasic

If you want to use old VB6 code, use

• Option OldBasic

For very old BASIC code, like QBasic, use:

• Option VeryOldBasic

It is possible to use all three modes in your programs, e.g. one module uses one mode while a
second module uses another mode. Just place one of these lines in top of your module. Default is
‘Option KBasic.'

Software development with KBasic
A typical KBasic application consists of forms, modules, classes, and other objects, which together
are your application. Forms, their controls, changing values in controls, or having the user click on
buttons generates events. You can react by assigning KBasic-code to such events.

Event controlled programming vs. traditional programming
When a traditional, procedure-built program runs, the application controls the executable parts of

16 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

the program, ignoring the events. The application starts with the first code of line and goes through
its source codes as the developer has defined. If needed some procedures are called.

In event controlled applications, user action or a system event triggers the execution of the event
procedure. The order in which the code is executed depends upon the order of the events, which
occur based upon user actions. This is the principle of graphical user interfaces and event controlled
programming. The user performs an action and your program reacts.

How does an event controlled application run?
An event is an action recognized by your forms or controls. Objects in KBasic know some
predefined events and react to them automatically. To get a control to react to an event, write an
event procedure for this event.

A typical application runs as follows:

• 1.The user starts the application.
• 2.The form or form control receives an event. The event can be triggered by a user-action

(e.g. key pressed) or by your code (e.g. event ‘Open’ if your code opens a form).
• 3.If there is a event-procedure for the event, the desired event code executes
• 4.The application waits for the next event

Some events automatically raise other events. More information is provided in the help of KBasic
Software Atelier.

Three Programming Steps
To create a simple KBasic program, you need only complete three steps, after which you will have a
program that can be run outside of KBasic’s programming environment just like any other
application you may have installed on your computer. The three steps are as follows:

• 1.Create the program’s user interface
• 2.Write the program source code, which makes the program do what it is supposed to do
• 3.Compile the program into an executable file to run as a standalone application (able to run

without being loaded into KBasic – only Professional Version of KBasic). This is done by
the KBasic Software Atelier Binary Compiler.

Of course, there are many details involved in each of these three steps, especially if you are writing
a lengthy program. As you work, complete these steps in the order listed above. You should
frequently alternate between steps 2 and 1 to fine-tune your user interface. You might even return to
step 2 from step 3 as you discover problems after compiling your program.

Object orientated programming with KBasic
Object orientated programming is one of the most important concepts of recent years and has
become a commonly used technique. Object oriented programming covers issues like: What are
classes and objects and how they relate to each other The behavior and attributes of classes and
objects Inheritance of classes and how the design of programs are affected

Objects and classes
KBasic is an object-orientated programming language. Object-orientated, in KBasic terms, contains
the following ideas:

17 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

• Classes and objects in KBasic
• Creating objects
• Garbage collection to release unused objects
• The difference between class-variables and instance-variables and the difference between

class-methods and instance-methods
• The extension of classes in order to create a sub-class (child-class)
• The override of class methods and polymorphism when it comes to calling methods
• Abstract classes

If you are a Java-developer or a experienced developer in another object-orientated programming
language, you will know many of the concepts of KBasic.

Object-orientated programming means every object is part of another object. For example, in the
real world, cars consist of many objects like windows, steering wheels, and so on.

There is only one class (building plan) for a window or steering wheel. Therefore there exists a
class window and a class steering wheel, but many objects window or steering wheel, which are the
instances of a class. An instance of a class is also called an object of a class. Classes exist when you
write your code. Objects are created when KBasic runs your code using your classes!

Every class has the following elements:

• 1. Parent-class
• 2. Attributes (variables, constants…)
• 3. Methods

Parent-class means all attributes and methods of the parent-class apply to the new class in addition
to attributes and methods you declare in the new class.

Attributes can be properties, constants, or variables pertaining to a class.

Methods are procedures and functions of a class. Methods are arguably the most important part of
any object-orientated programming language. Whereas classes and objects provide the framework
and class and instance variables provide a way of holding that class’ or object’s attributes, the
methods actually provide an object’s behavior and define how the object interacts with other objects
in the system.

Variables and methods can be related to a class (one time in memory) or can be instance-related (as
many as instances of that class exist) in the declaration of a class (outside a method):

• Instance-variable
• Dim instanceVar

• Instance-method
• Sub instanceSub()

• Class-variable
• Static staticVar

• Class-method
• Static Sub staticSub()

Class-method or class-variable can be used without any created object. Instance-method or
instance-variable can only be used together with an object. Instance-variables are like local
variables of a procedure. Local variables only exist after calling the procedure, instance-variables
only exist within the lifetime of an object. Class-variables are global and available at any time.
Class variables are good for communicating between different objects with the same class or for

18 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

tracking global states among a set of objects.

Classes can contain constants as well, like declaring variables. Constants are declared in the
declaration area of a class.

Classes can give all its elements to its child, which is called inheritance.

Inheritance of classes
Inheritance is an important part of object-orientated programming. KBasic, like Java, supports
single inheritance, meaning every class inherits one parent class. It is not possible to inherit from
many classes. In the far future, it will be possible to use an interface to do many things you could do
with multi-inheritance. As in Java, all objects in KBasic are created with ‘New.' A class is a
collection of data and methods working on those data. Data and methods describe the content and
the behavior of an object.

Objects are instances of a class. You cannot do much with a single class but can do much more with
an instance of a class, a single object containing variables and methods. Object-orientated means the
objects are the centerpiece, not procedures and variables.

KBasic-Syntax
To read and write programs quickly you must know the syntax of KBasic. The syntax defines how
to write programs. It defines how to write each language element, how they work together, and how
to use them. The following pages cover these language elements.

Statements and expressions
Statements are a complete action in KBasic. Statements can contain keywords, operators, variables,
constants, and expressions. Every statement can be categorized by one of the follwoing:

Statements as declaration or definition for class, module, variable, constant, procedure, function,
method, property Assignment statements, assigning a value or expression to a variable or constant,
or property Executable statements performing an action. These statements can execute a method,
function, procedure, loop, or condition. Executable statements often contain conditional or
mathematical operators (even complex expressions).

Multi-Line statements
Normally every statement fits into one line, but sometimes is more readable to split one statement
into several lines. If so, use the line continuous underscore (_). In the following example the (_) is
used:
Sub field()
 Dim myVar As String
 myVar = "Bernd"
 MsgBox Prompt:="Hello " & myVar, _
 Title:="Hello"
End Sub

You can write many statements in one line using a colon (:) to separate the statements. For example:
Print „Hi“: Print „Ho“

19 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Variables and DataTypes
While computing expressions you may need to store values for a short time. For example, you
would like to calculate different values, compare these values, and depending on those values,
perform different operations. In order to compare values you need to store them. Storing does not
save the values on disk but in memory because you need the values only when running your
program.

KBasic uses variables to store values at runtime of your program. After stopping your program, all
variables (even objects) are deleted. A variable can change its value at any time. You can change its
value by assigning an expression, another variable, or a contstant to it. A variable is a space in
memory used by KBasic to store values so variables are not stored in a file. Like a file, a variable
has a name (used to access the variable and to identify it) and also a data type to specify the type of
information a variable holds.

KBasic knows instance-variables, class-variables, global variables, and local variables.

Instance-variables are part of an object, class-variables are part of a class, global variables can be
used everywhere, and local variables are part of a procedure, function, or sub (also called method in
classes).

Declaration of Variables / Explicit declaration
Before using variables, you must declare them. You must define the name and the data type of a
variable. The ‘Dim’-statement declares a variable. ‘Dim’-statements are one of many variable
declaration statements, which slightly differs from the others. Other declaration statements are
‘Redim,' ‘Static,' ‘Public,' ‘Private,' ‘Protected,' and ‘Const’.
Dim myName As String

Variables can be declared everywhere in procedures, functions, and subs, not only at the top of
procedures, functions, and subs. However, most or the time they are at the top.
Sub doEvent()
 Dim myName As Integer
End Sub

Every line of your source code can contain many declaration statements for many variables. Which
data type the variables have, depends upon the way you declare the variables. If you give every
variable explicitly a data type specifier, the default data type for variables will not be used. The
default data type depends upon the mode chosen for your program. In ‘KBasic Mode’ and
‘OldBasic Mode’ the default data type is ‘Variant,' in ‘VeryOldBasic’ it is ‘Double.'
Dim firstname, sirname, lastname As String

name is type ‘Variant’ sirname is type ‘Variant’ lastname is type ‘String’

Or explicitly with different types:
Dim myName As String, age As Integer

To use a data type you have to write it for every variable, otherwise the default data type would be
used. In the following statement all variables are declared as ‘Integer.'
Dim intX As Integer, intY As Integer, intZ As Integer

20 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

In the following statement intX and intY are declared as ‘Variant’ and intZ as ‘Integer.'
Dim intX, intY, intZ As Integer

Variables can have a start value for initial. In order to do so, you have two ways:

Either
Dim name = „sunny sun“ As String

or
Dim name As String = „sunny sun“

If many variables are declared in one line, only lastname has the value “sunny sun.”
Dim name, sirname, lastname = „sunny sun“ As String

If no value is assigned by declaration, the default value of 0 is used if it is a numeric variable. If it is
a string, a nullstring is used with length 0 (““). Object variables are set to ‘Null.' Variant is ‘Empty.'

Names of variables must not be longer than 128 characters and must not use all characters possible.
Do not use periods, commas and other non-writable characters. Only the underscore (_) is allowed.

Important! Normally, KBasic does not differentiate between a variable name written in lowercase or
uppercase. In fact you can write it differently in every line. However, to be compatible with future
versions of KBasic, always write your variable names consistently. Some exceptions exist. If you
use the bindings, you always write the name of methods the way it is mentioned in the
documentation. So Named, named, naMED are the same variable.

Use the following rules to name procedures, functions, subs, constants, variables, or arguments in
KBasic:

• Use a letter (A-Z, a- z) or underscore (_) as your first character
• Never use whitespace (), period (.), exclamation mark (!), or the following characters : @,

&, $, #, „ in your names.
• The name may contain numbers but must not start with a number
• Do not use names already in use by predefined elements of the KBasic language, such as

keywords (e.g. ‘If’), builtins (e.g. ‘Print’), classes etc. This would lead to a name collision in
which the original language element would be expected. Your program will not compile.

• You cannot use variables with the same name in the same scope. e.g. you cannot declare
variable ‘age’ two times in a procedure, but you can declare ‘age’ in a procedure and in a
module at the same time because they are declared in different scopes (at different places).

Declarations of variables in different scopes
You can place a declaration statement inside a procedure, function, sub, or method to declare a
variable in local scope. Additionally, you can place a declaration to declare global-variable, class-
variable, instance-variable in the declaration section of a class or module. The place of the
declaration determines the scope of the variable. The scope of a variable cannot change at runtime
of your program, but you can have different variables with the same name at different places. For
example, if you have the declaration of a variable named ‘price’ in a procedure, and the same
declaration in a module, all uses of this variable in the procedure are related to the local variable
‘price,' all uses outside the procedure are related to the global variable ‘price.'

21 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

A variable named sName with type of ‘String’ is declared in the following example:
Dim sName As String

If this statement is part of a procedure, then it is possible to use this variable in the same procedure
only. Is this statement part of a module declaration section, you can use it in all procedures of the
module, but not outside the module (in fact it is declared as ‘Private’ implicitly). To be able to use it
everywhere, you can use the keyword ‘Public’. Example:
Public sName As String

Use of the ‘Public’-Statement You can use the ‘Public’-statement to declare public variables in
module scope or class scope, making the variable accessible from everywhere.
Public sName As String

Use of the ‘Private’-Statement Use the ‘Private’-statement to declare private variables in module
scope or class scope, making the variable accessible only from the same scope (module scope, all
module procedures, class scope, all class methods).

Private myName As String

If the ‘Dim’-statement is used in module scope or class scope, it is treated as a ‘Private’-statement.
Use the ‘Private’-Statement to have cleaner, more readable code.

Use of the ‘Protected’-Statement Use the ‘Protected’-statement to declare protected variables in
class scope, making the variable accessible from within the same scope (class scope, all class
methods, sub-classes, all sub-classes methods). This allows you to underline the inheritance
hierarchy of your classes.
Protected myName As String

Use of the ‘Static’-Statement Static has three different meanings, depending upon the context used.

• Static inside a class, but outside a method. If you use a ‘Static’-statement instead of a
‘Dim’-statement, the variable is declared as class variable, meaning it can be used without
instance (objects) of this class. A class-variable exists only one time at runtime.

• Static outside a class, but inside a procedure (sub or function) or method. If you use a
‘Static’-statement instead of a ‘Dim’-statement, the variable is declared as local static
variable. The variable, once it has been declared, it is not destroyed by leaving the
procedure. The next time the procedure is entered, the value of the variable still exists.
Therefore, a local static variable is only one time declared when using recursive calls of a
procedure.

• Static outside a class, but before a procedure (sub or function) or method. If you use a
‘Static’-statement before the keyword ‘Sub’ or ‘Function’ all local declared variables are
declared as ‘Static’ variables, which means that a variable, once it has been declared, it is not
destroyed after leaving the procedure. The next time the procedure is entered, the value of
the variable still exists. Therefore, a local static variable is only one-time declared when
using recursive calls of a procedure.

You can add the keyword ‘Static’ to other keywords (‘Public’, ‘Protected’, ‘Private’).

Declaration of variables automatically / implicit declaration
For historical reasons it is possible to use variables without declaration. It is supported within a

22 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

special mode in which all variables are declared automatically when using a variable name that has
not been used before. Important! You should not use this mode unless you want to use old BASIC
code without changing it. Good programming style dictates declaring all variables with their types.
This also makes it easier for others to understand your code and minimizes typing errors.

In order to activate implicit declaration, write the following line in top of your program:
Option OldBasic
Option Explicit Off

Use of the ‘Option Explicit’-statement (supported within ‘Mode OldBasic’ and ‘Mode
VeryOldBasic’ only) As mentioned previously, you can implicitly declare a variable in KBasic by
using a assignment statement or expression with the variable name. All implicitly declared variables
have the data type ‘Variant’ (‘Option OldBasic’) or ‘Double’ (‘Option VeryOldBasic’). Variables of
type ‘Variant’ need more space in memory than most of the other data types. Your program is faster
when you explicitly declare your variables with the smallest data type possible. Another advantage
is that using declaration avoids name collisions or typing errors.

To explicitly declare variables within ‘Option OldBasic’ or ‘Option VeryOldBasic,' write on top of
all module and class files ‘Option Explicit On.' This creates a compilation error when a variable
name is not declared. If you are using the ‘KBasic Mode’ you must declare all variables. It is like
‘Option Explicit On.' By the way, the ‘KBasic Mode’ is set to default in all programs.

Important! You must declare dynamic arrays or fixed arrays at all times. Furthermore, you can mix
the modes in your program. One file is set ‘Option OldBasic,' another file is set ‘Option
VeryOldBasic.' You are free to set ‘Option Explicit Off’ for the old modes.

Local variables
The value of a local variable is available inside the procedure only. You cannot access the value
from outside the procedure. This makes it possible to have the same variable name for different
variables in different procedures without name collision.
Example:

Sub test1()
 Dim i As Integer

 i = 1
End Sub

Sub test2()
 Dim i As Integer

 i = 19
End Sub

Assignment-statement
Assignment-statements give or assign a variable a value or expression with variables, constants,
numbers, etc. An assignment always includes a sign (. The following example shows an
assignment.
Dim yourName As String
yourName = InputBox("What is your name?")

23 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

MsgBox "Your name is " & yourName

You do not need the ‘Let’ keyword. It is outdated and optional. An example shows how to ‘Let’:
Let yourName = InputBox("What is your name?")

Use the ‘Set’ statement VB6 to assign an object to an object-variable. ‘Set’ is not needed in KBasic
and must not be used. After the declaration of a variable, you can use it, e.g. make an assignment (

.
Dim Cool As Boolean
Dim myName As String

Cool = True
Name = „Julie“

Cool contains ‘True’, name contains ‘Julie’ after the assignment.

Lifetime of variables
The lifetime of variables is the time in which the variable exists or has a value. The value of a
variable can be changed during its lifetime. If a variable is outside its scope, it has no value. If a
procedure is executed, a variable exists after its ‘Dim’-statement. Local variables exists until the
procedure completed; after reentering the procedure all variables are created again after their
respective ‘Dim’-statements.

If you do not change the value of a variable during its lifetime in a program, it contains the
initialized value at program start. A variable declared in a sub contains an assigned value until the
sub is left. If the same sub is called again, the value is reset to the initialized value.

When using static-declared variables in procedures, the variables only exist once in memory, unless
the procedure is called multiple times using recursion. If you use global-declared module variables
or class-variables, it is the same. The variables exist once in memory at runtime. If you use
instance-variables you must consider that they only exist together with the instance (object) to
which they belong.

Place of declaration
Declare every variable and every procedure inside a class or at least inside a module.
Syntax:

Dim Name[([Index])] [As Type] [, Name[([Index])] [As Type]] ...

Dim Name [= Expression] [As Type]

Dim Name [As Type] [= Expression]

[Public | Protected | Private | Dim | Static] Name [= Expression] [As Type]

Data Types
Data types describe the type of data stored inside a variable. If you declare a variable you must also
give it a data type. KBasic supports all VB6 data types and much more. You can use one of the
following data types:

24 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

• One of the simple data types (e.g. ‘Integer’)
• Name of builtin class (KBasic class, binding-class)
• User defined class
• User defined data type
• User defined enumeration

Simple Data Types
Simple data types store numbers and text. Simple data types are simple because they are built in
within KBasic and are not complex like classes. Every simple data type has borders determining the
size of the stored number. If a value is too big it loses precision, meaning it loses information! The
following table contains all KBasic supported datatypes with their needed space in memory.

• Data Type / Size / Value
• Boolean / 1 / ‘True’ or ‘False’ - stored as 8-bit numbers (1 Byte) and can only be ‘True’ or

‘False’,
• Byte / 1 / 0..255 - stored as 8-bit numbers (1 Byte) without a sign and can be >= 0 and ⇐

255
• Short / 2 / -2^15 bis 2^15-1 - stored as 16-bit numbers (2 Bytes). Values can be greater than

or equal to -32.768 and less then or equal to 32.767.
• Integer / 4 / -2^31 bis 2^31 –1 - stored as 32-bit numbers (4 Bytes). Values can be -2^31 >=

and +2^32. You can use integer variables to simulate enumerations, such as 0 = black, 1 =⇐
white and so on. You should not use it for enumerations like in VB6, better use the new
approach with the ‘Enum’-keyword. Type suffix is (%).

• Long / 8 /-2^63 bis 2^63 –1 - stored as 64-bit numbers (8 Bytes). Values can be -2^63 >=
and +2^64. Type suffix is (&).⇐

• String / size depending on string length / unlimited - There are two types of strings, strings
with fixed length and strongs with dynamic length. Dynamic strings can be up to 2^31
characters long. Normally, strings or string arguments are dynamic strings. The dynamic
string changes size when assigning new values. Fixed strings are used together with
‘Type’-keyword, only. Type suffix is ($).

• String / fixed length / length of string - Fixed strings can be up to 2^31 characters long.
Fixed strings are used together with ‘Type’-keyword, only. Type suffix is ($). myStringVar =
„1234 Names symbols .!/& keywords IF ? - “

• Character / 2 / - reserved for future.
• Single / 4 / - stored as floating numbers (4 Bytes) with single precision. Values can be

between -3.402823^38 or -1.401298^-45 or between 1.401298^-45 until 3.402823^38. Type
suffix is (!).

• Double / 8 / - they are stored as floating numbers (8 Bytes) with double precision. Values
can be between -1.79769313486232^308 bis -4.94065645841247^-324 or between
4.94065645841247^-324 till 1.79769313486232^308

Type suffix is (#).

• Object / 4 / + size of the object - stored as 32-bit references (4 Bytes).
• Date/Time / 8 - stored as numbers (8 Bytes). A date literal must be #yyyy-mm-dd# . A time

literal must be #hh:mm:ss# .
• Currency / 8 - stored as numbers (8 Bytes). Values can be between

-922,337,203,685,477.5808 or 922,337,203,685,477.5807. Type suffix is (@).
• Variant / 40 - A ‘Variant’ variable is always 40 bytes big.
• Classes / - see Object

25 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

• User defined data type / see next chapter - size depends on its elements

User defined types
User defined types have been heavily used in the 1980s and 1990s, but today they step behind
ordinary objects. User defined types are a group of variables with different types stored in one
variable. These types can be simple data types or even user defined types.
Syntax:

Type Name
 Name [(Index)] As Type
 ...
End Type

Class types/Objects
Variables can store objects (actually, references to objects). These variables are object variables of
data type ‘Object’ and are 4 bytes. Unlike in VB6, assignment of objects to an object variable do not
need the ‘Set’-keyword. The '='-statement is recognized by KBasic correctly.

Though an object variable can contain any object (actually, the reference to that object), the binding
is done at runtime (late binding). If you would like to have early binding, use a class that inherits
the object class, like TextBox. Force early binding using a cast statement, too.

Type Variant
The data type ‘Variant’ is automatically used if you do not specifiy a data type for an argument,
constant, procedure or variable. An exception, is using a variable in ‘VeryOldBasic’-Mode. It has no
‘Variant’ but ‘Double’-data type. Variables of type ‘Variant’ can contain strings, dates, time values,
boolean values or even numerical values. The size of ‘Variant’ is 40 bytes. Accessing variant data
types is slower. The following example creates two variables of type ‘Variant’:
hisVar = 3

Dim myVar

Dim yourVar As Variant

The first statement implicitly declares a variable (automatically).

Additionally, a ‘Variant’ can store the following values:

• ‘Null’
• ‘Empty’ (old style)

Suffix of variables
Names of variables can determine their data types. Historically, you can append a special symbol
showing the variable’s data type. KBasic supports this old style of programming for historically
reasons. Example:
Dim i% ' Integer variable
Dim l& ' Long variable

26 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Dim s$ ' String variable

The following type symbols are supported.

• Integer - type sign for ‘Integer’ is (%).
• Long - type sign for ‘Long’ is (&).
• String - type sign for ‘String’ is ($).
• Single - type sign for ‘Single’ is (!).
• Double - type sign for ‘Double’ is (#).
• Currency - type sign for ‘Currency’ is (@).

Comments
The comment symbol (') is used in many code lines in this book. Comments can explain a
procedure or a statement. KBasic ignores all comments while compiling and running your program.
To write a comment, use the symbol (') followed by the text of the comment. Comments are printed
in green on screen. KBasic recognizes four ways to write comments, as shown below.
REM this is a comment

‘ this is a comment, too

and like in Java

/* comment begin and comment end */

/** docu comment begin and docu comment end */

Comments are extremely helpful when it comes to explaining your code to other programmers. So
comments, normally, describe how your program works.

Way of naming
When coding in KBasic, declare and name elements, like procedures (functions and subs),
variables, and constants and so on. All names

• must start with a letter;
• must contain letters, numbers, or the sign (_); periods and commas are forbidden;
• must not be longer than a defined length; and
• must not contain reserved words

A reserved word is a part of KBasic and has a predefined meaning. These include keywords (e.g.
‘if’ or ‘then’), builtin-functions (e.g. ‘mid’) and operators (e.g. ‘mod’). A complete list of reserved
words is at the end of this book.

Literals
Besides keywords, symbols, and names, a KBasic program contains literals. A literal is a number or
string representing a value. There are different numerical literals.

• Byte, Short, Integer, Long - 1, 2, -44, 4453
• Hex - &HAA43

27 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

• Binary - &B11110001
• Octal - &O1234
• Single (Decimal), always English formatted - 21.32, 0.344, -435.235421.21
• Double (Decimal), always English formatted - 212.23
• Currency, always English formatted - 45.3@
• Date / Time, always English formatted - #1993-12-31#
• String - Is simply text, but it must start with a (“) and end with a (“) so that KBasic can

recognize it as string. A double (“) inside a string is interpreted as single (“). There are no
escape sequences like in C++. They can be used with builtin-functions. Unicode is supported
in future.

• Boolean - When you cast a numerical value to Boolean. Values with 0 are ‘False’. Values
with -1 are ‘True’.

Expressions
Expressions stand for values. They can contain keywords, operator, variables, constants or even
other expressions. Examples for expressions are:

• 1 + 9 (number operator number)
• myVar (variable)
• myVar TypeOf Object (variable keyword classname)

Expressions can return a value or not. If an expressions is to the right of an assignment statement (
, the expression gives or must give a value back.

myVar = 1 + 9

1 + 9 is 10 and this expression value (10) is stored in myVar. It is exactly the same when the
expression is used as a parameter in a function call.
MyProcedure(1 + 9)

Expressions are calculated at runtime and represents a value. The result can be assigned to a
variable or to other expressions listed above.

Constants
Constants are similar to variables but they cannot change values. When you declare a constant you
assign a value to it that annot be altered during lifetime of your program. Example:
Const border As Integer = 377

This ‘Const’-Statement declares a constant border with data type ‘Integer’ and a value of 377. Use
the same rules for declaring constants as for variables. A ‘Const’-statement has the same scope as
the variable statement. To declare a constant inside a procedure, place the ‘Const’-statement inside
this procedure (normally one of the first statements). To declare a constant as accessible for all
procedures, place it within the module (or class) where the procedures are.

This ‘Const’-Statement declares a constant conAge as public with data type ‘Integer’ and a value of
34.
Public Const conAge As Integer = 34

Constants can contain all simple data types: Boolean, Byte, Short, Integer, Long, Currency, Single,

28 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Double, Date, String or Variant. You can also declare many constants in one line.
Const conAge As Integer = 39, conSalary As Currency = 3500

This ‘Const’-Statement declares constant conAlter and conSalary. Syntax:
Const Name = Expression

Const Name [As Type] = Expression [, Name [As Type] = Expression] ...

[Public | Protected | Private] Const Name [As Type] = Expression

Operators and Operands
KBasic supports all VB6 operators. Operators are '+' or '-' for example. Operands are numbers,
strings, or variables (or expressions). KBasic supports operator overloading for the indings. In the
future, it will be possible to use operator overloading inside KBasic classes like it is possible in
C++.

There are different kind of operators.

Operators for calculating
They are used for calculating of two operands. Every of those operators needs two operators. The
minus (-) can be used to negate values, like -9 means negative 9, +9 means positive 9, 9 means
positive 9

Calculating operators are:

• + Addition – Addition adds two numbers or strings. If you add a number and a str`ing
KBasic cannot be sure if the * result should be a number or string. In this case, use the '&'
Operator instead of '+' for strings. e.g. 3 + 4

• - Subtraction – Subtraction subtracts a number from another number. e.g. 5 – 7
• * Multiplication - Use to multiply two numbers e.g. 33 * 7
• / Division - Use to divide two numbers. The result is floating point. e.g. 2 / 5
• \ Integer-Division - The result has data type ‘Integer’. e.g. 29 / 5
• Mod Modulus, also known as remainder of Integer-Division – Returns the remainder of a

result of an Integer-Division e.g. 45 Mod 10

Integer-Division results in an ‘Integer’ value. Example: x is 10, y is 4
Print x + y ' is 14
Print x – y ' is 6
Print x * y ' is 40
Print x / y ' is 2.5
Print x \ y ' is 2
Print x Mod y ' is 5

Normally, the result has the data type of the operand (= expression) with more precision.
Assignment-operators

At this time, KBasic supports more than the normal assignment operator (. Like C++, KBasic
supports the extended assignment operators.

• += Add-Assignment (e.g. var += 1 is like var = vara + 1)
• -= Subtract-Assignment (e.g . var -= 1 is like var = vara - 1)

29 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

• /= Divide-Assignment (e.g . var /= 1 is like var = vara / 1)
• *= Multiply-Assignment (e.g . var *= 1 is like var = vara * 1)

If you use the bindings, you can additionally use further C/C++-assignment operators like |= Or-
Assignment. See binding documentation for more details.

Increment and Decrement
Currently, C++ operators, '++' and '- -' are supported for the bindings. To increment or decrement,
use var = var + 1 or var = var – 1. You may also use INC(var) (increment, +1) or DEC(var)
(decrement, -1) in the future.

Comparision
KBasic has different operators to compare expressions: These operators compare between two
operands (expressions) and the result is ‘True’ or ‘False’:

• = Equal - e.g. x = 3
• <> Unequal - e.g. x <> y
• < Smaller - e.g. x < 3
• > Bigger - e.g. x > 4
• Smaller or equal - e.g. x 4⇐ ⇐
• >= Bigger or equal - e.g. x >= 3

If you use the bindings, you can use further C/C++-comparision operators like ==-Assignment. See
binding documentation for more details.

If you use the bindings, you can additionally use further C/C++-comparision operators like ==-
Assignment. See Binding documentation for more details.

Logical operators (Boolean Operators)
Use logical operators for performing bit operations or combining bits together. The result is ‘True’
or ‘False’. Unlike VB6, KBasic supports true logical operators for decisions (‘AndAlso’, ‘OrElse’).

• AndAlso - Both operands (expressions) must be ‘True’
• OrElse - One of the operands (expressions) must be ‘True’
• You can also use bit-operators instead of ‘AndAlso’ or ‘OrElse’.
• Bit Operators
• And and - e.g. 4 And 6 - Useful for doing logical conjunctions of two expressions. The result

is ‘True’ if both expressions are ‘True.'
• Or or - e.g. 33 Or 8 - Useful for doing logical disjunctions of two expressions. The result is

‘True’ if one of both expressions is ‘True.'
• Xor exclusive or - e.g. 77 Xor 3 - The result is ‘False’ if both expressions are ‘True.' Or the

result is ‘True’ if one of both expressions is ‘True.'
• Not not - e.g. Not 5 -Useful if you would like to negate expressions. Furthermore, ‘Not’

inverts a bit of byte. BitAnd, BitOr, BitXor, BitNot are the same as ‘And’, ‘Or’, ‘Xor’ and
‘Not’ and are supported for compatibility reasons.

A result is -1 (‘True’) when all bits are set (binary 1111 1111) or 0 when all bits are not set (binary
0000 0000). When using the bindings, you can use further C/C++-shift operators like « or ». See
binding documentation for more details. You can use SHL(number of digits) or use SHR(number of
digits) in the future.

30 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Other Operators
• ^ Power - Useful if you want to use power. If they are many powers in one expressions they

are processed from left to right.
• Like - Useful to compare two strings (using a pattern). If string and pattern match, the result

is ‘True’.
• New - creates a new object using a class
• () or [] - Accesses indexes of arrays or argument holders for procedures
• . dot operator - Needed for calling methods or elements in types or enumerations
• & String concatenating - Appends one string to another
• Eqv - means x Eqv y = Not (x Xor y)
• Imp - means x Imp y = Not (x And Not y)
• Is – Determines if two objects are based on the same class.

If you use the bindings, you can use the following C/C++-operators. See binding documentation for
more details.

• ++ increment
• – decrement
• [] index access
• |= or-assignment
• &= and-assignment
• | or
• ! not
• == is equal
• != unequal
• ^= power-assignment
• « shift left
• » shift right

String concatenating
It is possible to add two strings, or append one string to another. The result is data type ‘String’. To
append, there exist two operators: '+' and '&'. The '+' works incorrectly when one operand is a
different type than ‘String’. To be sure of the correct types, use '&' for string concatenating.

• '+'
• '&'

Example: Name + “is a” + color + “bird” If the first operand is a string, using '+' forces all other
operands to be treated as strings.

Operator order
KBasic supports die operator order of VB6. Normally, an expression is executed from left to right
following standard mathematical rules.

e.g: x = 10 + 10 / 2 results in 15 and not 10, because / is calculated before +. Here is the overview
about operator order/priority from top to bottom, which means ‘*’ is executed before ‘And.' The
bindings operators are included in braces ():

• 1. . () []
• 2. Not, BitNot, !, ++, –, (unary +), (unary -)

31 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

• 3. New
• 4. ^
• 5. * / \ Mod
• 6. + - &
• 7. Imp Eqv
• 8. < > >= = Is Like == !=⇐
• 9. And BitAnd (& C/C++ And)
• 10. Or Xor BitOr BitXor (| C/C++ Or) (^ C/C++ Xor)
• 11. AndAlso
• 12. OrElse

Use paranthesis () to change the order. e.g. X = (10 + 10) / 2 results in 10 and not 15, because + is
calculated before / thanks to the braces.

Avoiding name collision
A name collision occurs when you use a name that was already defined in KBasic (or even by
KBasic itself = keywords). Avoid name collisions by knowing the concept of scopes. There are
different types of scopes in KBasic: procedure scope, global scope, class scope, module scope, and
the scope modifiers (‘Public’, ‘Private’, ‘Protected’). You can have name collisions in the following
situations:

• If an identifer can be accessed from different scopes
• If an identifier has different meanings in the same scope

Most name collisions can be avoided by using full qualified names of identifiers. Example:
aModule.aSub(Module1.Var1)

Editing source code
Editing source code is no different than editing text in a word processor. You have a cursor showing
the current position you can type in. The find and replace commands within the editor work just as
in your word processor, as well as many other common commands.

Working with objects
Because KBasic is an object-orientated programming language, you probably would like to know
how to use these features. The following issues need to be discussed:

• How can I create a class?
• How can I create an object (instance) of a class?
• How can I use class-variables, class-methods, instance-variables and instance-methods?
• How can I convert an object into another object?

Create new objects
Either you create an object based on a built-in class of KBasic, or you create it from your own
defined class.

32 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Use of New
A variable, which contains the object and is declared, does not create the object at once. This
variable only has the data type of an object and represents only a reference to an object still to be
created. Create objects using the special keyword ‘New.' This creates an object by giving it the
desired class name and returns a reference to the new object. The reference is stored in a variable of
the class type. In this way, creating objects in KBasic is the same as for Java or C++. Example:
s = New Control()

You do not need to use the braces (), but when creating an object you have arguments that must be
written inside braces. ‘New’ is followed by the class name of the new object. The class has a special
procedure called constructor, called by ‘New’.

This constructor does some initial work for an object and returns a reference to the new created
object. Unlike regular procedures, you cannot call a constructor by calling it directly; instead
constructors are called by KBasic automatically when you create a new object with the ‘New’
command. Yet another example:
s = New Timer(begin, end)

What happens when using 'New'?
Using ‘New’ creates a new instance (or object) of a class. The matching constructor of that class is
executed. When using or declaring constructors, consider two important things first: The name of
the constructor matches the name of the class it means The return value is always an instance of that
class (implicitly). There is no return type declaration necessary, nor is the keyword ‘Sub’ or
‘Function’ used. A constructor must not explicitly return values using the keyword ‘Return’.

Syntax:
objectVariable = New ClassName[(Arguments)]

objectVariable = New ClassName()

objectVariable = New ClassName

Several Constructors
Sometimes, you may want to use an object differently or perform the initial stuff differently. You
can do so by using different constructors for the same class. Every class can have different
constructors with different arguments.

Example:
Class test1

 Constructor test1()
 End Constructor

 Constructor test1(i As Integer)
 End Constructor

 Constructor test1(i As Integer, m As String)
 End Constructor

33 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

End Class

'Null' (or 'Nothing')
The default value for object variables is ‘Null.' ‘Null’ (or ‘Nothing’) is a reserved word. The object
variable does not yet have a reference. ‘Null’ can only be assigned to object variables.

Releasing objects automatically
When you no longer need a object variable (or object), you do not need to explicitly delete or free
the object. KBasic mechanism to do that automatically, called garbage collection.

Releasing objects manually
You can also explicitly free or release objects using the ‘Null’ keyword. Just assign ‘Null’ to the
desired variable.
myVar = Null

Objects that are no longer referenced are automatically deleted by KBasic. This happens when no
object variable references to the object because the object variable has been deleted or the value has
been explicitly set to ‘Null.' For example:
objectVar = Null
objectVar = Nothing ' old style

You do not have to release objects, you can just forget about them. This is much different from C++
and other programming languages.

Create a class
Normally every class is a child of the special class ‘Object’ directly or indirectly through another
class. A class can inherit from another class (be child of that class). The declaration of a class
consists of a class name and the parent class name. Furthermore, you have constructors, sometimes
destructors, some variables (class-variables and instance-variables), and procedures (methods, class-
methods, instance-methods) and, of course, some properties and constants.
Class oak Inherits tree

Parts are:
Variables/ Constants / Properties / Types / Enumerations
Constructors
Destructors
Functions
Subs

End Class

A class can only be declared inside a module-file (not recommended) or inside a class file. To
declare a class inside a form-module-file is not possible, though actually it contains a class that
inherits from class ‘Form’ implicitly. It is possible to declare many classes in one class-file.

34 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Classes are not executed, but methods are
A new created class only contains the declaration part (class name and parent name), but no
methods. These must be created by the programmer. KBasic does not run any class, but the methods
inside the class.

Accessing objects
Accessing objects is done by using the dot operator (.).

Example:
classeName.variable

This syntax is quite the same as accessing elements of user defined types (‘Type’ … ‘End Type’).

Accessing class-variables and instance-variables
Accessing variables is done by using the dot operator (.). Example:
myObject.variable

When accessing class-variables, use the class name. When accessing instance-variables, use the
name of the object variable:
className.classVariable
objectName.instanceVariable

Important! Class-variables only exist one time, so it is not important how many objects of that class
exists. The class itself exists only one time, so do the class variables. You can use the class-variables
without having created an object of that class before. The class is available while running your
program at any time. It is like a global variable

However, instance-variable are part of an object of a class, so a instance-variable exists how often
objects exists of that class and only at during the lifetime of the object. If you declare a variable
inside a class, you can mark a variable with the keyword ‘Static’ if it should be a class-variable. If
you do not, it is by default a instance-variable. Example:
Static myClassVariable As Integer
Private myInstanceVariable As String

Another example:
myClass.classVariable = 23

Dim o As myClass

Accessing inside a method:
o.instanceVariable = 99

Class-methods and instance-methods
Like variables, methods can also be class related or object related. Class-methods are always
present, instance-methods are only present when its object is present. Class-methods are like global
functions. You cannot use ‘Me’ or ‘Parent’ inside class-methods because there is no object.

35 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

When you define a method, use the keyword ‘Static’ to define a class-method. If you leave it out,
the method is by default an instance-method.

Example:
Static Sub myClassMethod()
...
End Sub

Sub myInstanceMethod
...
End Sub

Calling methods
Again, use the dot opertator (.) to access the methods.
myObject.myMethod()

References to objects
Using the '='-Assignment you can assign a reference of an object variable to another object variable.
Both variables then reference the same object.

Example:
Dim i As tree
Dim s As tree

i = New tree
s = i

Both variables then reference the same object. Important! ‘Set’ known from VB6 is not allowed and
not needed to assign objects in KBasic, because it is obsolete.

Copying objects
Because objects are not passed by values in procedures, an assignment of an object does not copy
an object. Instead you must provide proper methods in the classes that can copy an object. In the
future, KBasic will provide objects with a clone method to copy objects.

Comparision of objects
The '='-comparison operator tests if two object variables reference the same object,not if both
variables’ objects have the same content. Instead you have to provide proper methods in the classes
to compare objects. In the future, KBasic will provide objects with a compare method that will be
able to compare objects. This will be the equals method.

Summary: Objects, properties, methods and events
An object is an element of an application, such as a table, a form, or report. To use such an element,
use the collections provided by KBasic. A collection contains different objects of the same object
type, like collection for forms contains all forms of your application. Elements of a collection can
be accessed by an index or name.

36 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Accessing by index:
Sub myClose()
 Forms(1).Close
End Sub

Accessing by name:
Sub closeForm()
 Forms("myForm2").Close

End Sub

If the collection contains methods usable for all elements of that collection, you can access it using
the collection name and the desired method.
Sub closeAll()
 Forms.Close
End Sub

A method is part of an object and contains executable code, which can be called at any time.
Sub addNewEntry(newEntry As String)
 Combo1.Add(newEntry)
End Sub

A property is part of an object that stores a values like size, color, or position of an object. You can
change the value of a property by writing the object name, a dot (.), property name, equal sign (

, and the new property value.
Sub changeName(newTitle)
 myForm.Caption = newTitle
End Sub

Some properties are only readable. See the proper help entry of a property for more details. Getting
a property value:

An event is an action recognized by an object, e.g. if someone clicked with the mouse or pressed a
key then an event procedure is executed. Event procedures can be called by system events or
manually by your program, like normal procedures.
Sub CheckBox1_Click(.....)
 Print "Hi"
End Sub

Creating object variables
Think of an object as a variable, like it would be the object itself. You can access the object through
a object variable, call a object method, or property.

How to create an object variable?

• 1. Declare a object variable
• 2. Assign an object to the object variable using the ‘New’ keyword to create a new object or

assign an existing object

37 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Declaration of an object variable
To declare an object variable, use the ‘Dim’-statement or another declaration statement (‘Public’,
‘Private’, ‘Protected’ or ‘Static’). A variable, which references an object, must be of type ‘Variant’,
or ‘Object’, or specific object type (like ‘Form’, ‘Font’…) Some declaration of objects examples:
' Object1 as Variant
Dim Object1

' Object1 as general Object
Dim Object1 As Object

' Object1 as Font-Object
Dim Object1 As Font

When using an object variable without a declaration, the object variable has the default data type
‘Variant’ (using without declaration is possible only in OldBasic Mode!).

The declaration of an object variable with data type object is useful when you do not know which
object type you would like to have in a generic sub.

If you know the specific object, declare the object variable with the same data type as the object.
Example with normal object type and specific object type:
Dim Objekt1 As Object ' Object

Dim Objekt1 As Sample ' Sample

The declaration of specific object types has some advantages, such as type checking and more
readable or faster code execution.

Assignment of objects to an object-variable
Using the '='-statement lets you assign objects to an object variable. An object variable can have the
value of ‘Null’ (or ‘Nothing’) or an object reference.

Some examples:
Object1 = Object2 ' object reference
Object1 = Null ' set no object reference

Combine the declaration of an object variable with the creation of an object when you use the
keyword ‘New’ and the '='-statement.

Example:
Dim Object1 As Object = New Object ' creation and assignment

When assigning the value ‘Null’ to an object variable that has previously contained an object
reference, use the object variable to avoid accidentally changing the object. Example:
If Not Object1 Is Null Then
 ' object variable references an object
 ...
End If

38 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Use current instance or object / Me / Parent
The keyword ‘Me’ references the current instance (or object) in which the code is currently
executed. ‘Parent’ refers to the current parent object. Normally it is the current class (user defined
class or form class).

Example:
Sub changeObjectColor(Object1 As Object)
 Object1.BackColor = RGB(Rnd * 256, Rnd * 256, Rnd * 256)
End Sub

changeObjectColor(Me) ' statement inside the object

Second time use of 'Parent'
There is another meaning of ‘Parent’. If a parent class contains several constructors, you can
explicitly determine the parent constructor to be called by using the ‘Parent’ keyword with the
desired constructor of the parent class. This statement must be the first statement in a constructor of
a child class because the constructor of a parent class must be called before any action of a child can
happen. Normally, the right constructor is automatically used to call parent if you do not explicitly
include it.

Example:
Class movies

 Protected sMovieName As String

 Sub printName
 print sMovieName
 End Sub

 Constructor movies(s As String)
 sMovieName = s
 End Constructor

End Class

Class movies2 Inherits movies

 Constructor movies2(ByRef s As String)
 Parent.movies(s + "2")
 End Constructor

End Class

Dim k As Integer = 9

Dim m As New movies2("final fantasy")

m.printName()

39 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Casting of objects and simple data types
There exists some functions for casting simple data types like ‘Cint.' While using objects, there is a
possibility to cast objects in a parent or child class. While casting an object, it is either reduced
(upcasting) or extended (downcasting). The inheritance hierarchy shows which object is a child
object of another object. At the top is the parent of all objects, the class ‘Object,' to bottom follow
the child classes.

Upcasting and downcasting implicitly
Downcasting, the object ‘o’ contains more methods, variables than object ‘m’ and is therefore
extended:
Dim m As Control
Dim o As CommandButton ' control is parent class
o = m

Upcasting, the object ‘h’ contains lesser methods, variables than ‘m’ and is therefore reduced:
Dim h As Control
Dim k As CommandButton ' control is parent class
h = k

Comparing objects
When using '=' with object variables in an expression, the expression becomes ‘True’ if both
variables points to the same object. To compare both objects’ variables or contexts, you must
provide proper methods inside the classes used to compare these objects.

Asking about objects and classes
Determining types of objects at runtime:
If TypeOf myObject Is myClass Then

Returns ‘True,' if the class name is the seeked name, or ‘False’ if it is different Syntax:
TypeOf objectVariable Is ClassName

Subclassing and inheritance
There is another possibility to extend your own classes or KBasic classes. This is called inheritance,
meaning you use a parent class as a template for a new class in which you add new methods,
variables, etc. All elements, like methods and variables of the parent class, are automatically inside
the new class (hidden) and can be accessed and used depending upon the declaration in the parent
class. To change the behavior, override a method of the parent class (have the same name and
arguments), so that the algorithm of the parent class uses the new method in the new class instead of
the original method in the parent class.

Inheritance is a very powerful and an important feature of object-orientated programming
languages. Using the keyword ‘Inherits’ tells KBasic which parent class it uses for the new class:
Class movies

 Protected sMovieName As String

40 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

 Sub printName
 print sMovieName
 End Sub

 Constructor movies(s As String)
 sMovieName = s
 End Constructor

End Class

Class movies2 Inherits movies
...
End Class

Because, every class has a parent class, all classes forms together a class hierarchy (or inheritance
hierarchy). The inheritance hierarchy like a tree, with a root (parent class ‘Object’) and many twigs
(many child classes).

Constructor chaining
When declaring a class, KBasic guarantees that the class can be used to create an object because it
automatically inserts a hidden default constructor with no arguments that is called when using this
class without arguments. If you create a constructor, KBasic looks after the first statement in this
constructor and inserts an automatic constructor call for the parent class if there is no explicit call
for the parent constructor. The hidden default constructor can always be overridden.

The call of constructors is like a chain. All constructors are connected together. Every time you
construct a object, it follows all constructors of all parent classes up to the parent class ‘Object.' The
first constructor called is the constructor of ‘Object,' then the child constructors of the child classes.

The default constructor
If a class does not call a parent constructor explicitly, KBasic does it implicitly hidden. If a class
does not have a constructor, KBasic implicitly inserts a standard constructor, which calls the parent
constructor automatically.

Hidden Variables
An existing variable in a parent class can be overloaded by a variable in the child class through
inheritance, though it is possible to access both variables with the same name. It is called hiding,
because it is not automatically visible anymore. To access the parent variable, enter ‘Parent’, dot (.)
and the variable name:
Parent.myVariable ' access parent variable
myVariable ' access me variable

Hidden Methods
An existing method, like a variable, in a parent class can be overloaded by a method in the child
class through inheritance, though it is possible to access both methods with the same name. This is
called hiding, because it is not automatically visible anymore. Hidden methods are also called

41 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

overridden methods. Overriding takes place if the child class has a method with the same methods’
signature (name, return type, same arguments) as the parent class. The parent method is now
overridden. If you would like to access the parent method, enter ‘Parent’ dot (.) and the method
name:
Parent.myMethod() ' access parent method
myMethod() ' access me method

Overriding methods
Overriding occurs if the child class has a method with the same method signature (name, return
type, same arguments) as the parent class. The parent method is now overridden. If this method is
called within the child class, the new defined method is used, even by the parent methods (included
by the child class).

Overriding methods is a very important technique in object-orientated programming. However, do
not confuse overriding with overloading. Overloading means having many methods with the same
name in a class but with different method signatures (different return type or arguments).

KBasic treats variables and methods equally within a class. It is no different when it comes to
overriding methods and hiding variables. You can easily access hidden variables by casting its type
to the parent type or using the keyword ‘Parent’. The difference is an internal meaning because
variables are different when used in child and parent class (they actually use their own variable),
while methods are used by both (both parent and child class use the same method!).

Dynamic-searching of methods
While compiling, KBasic cannot know which methods in which class should be called because it
could be coded to dynamically search at runtime. This is called late binding, meaning it is not as
fast as early binding that takes place when you call functions or procedures of a module.

Calling an overrided method
Access overridden methods by casting its object variable to the parent type or use the keyword
‘Parent’.

Example:
Class A
 Dim i As Integer

 Function f()
 Return i
 End Functon

End Class

Class B Inherits A
 Dim i As Integer ' this variable hides i in A

 Functon f() ' this method overrides f() in A
 i = Parent.i + 1 ' accessing A.i
 Return Parent.f() + i ' accessing A.F()
 End Functon
End Class

42 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

If you override a method, you have two methods: the old method in the parent class and the new
method in the child class. Access the old method explicitly using ‘Parent.' Access the new method
using ‘Me’ or the standard call of a method. A further example:
' class example
Class being

 Constructor being()
 Print "being.Constructor!!!!"
 End Constructor

 Sub cry()
 Print "being.cry"
 End Sub

End Class

Class body Inherits being

 Constructor body()
 Print "body.Constructor!!!!"
 End Constructor

 Sub cry()
 Print "body.cry"
 End Sub

End Class

Class face Inherits being

 Constructor face()
 Print "face.Constructor!!!!"
 End Constructor

 Sub cry()
 Print "face.cry"
 End Sub

End Class

Dim l[10] As being

l[3] = New being
l[4] = New face
l[5] = New body

' polymorphism
l[3].cry()
l[4].cry()
l[5].cry()

Hiding data
Hiding data (variables and constants…) is a very important technique in object-orientated
programming. Hiding data means not all data in a class can be accessed by other modules or

43 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

classes, but through methods of the same class in which the data is present so that it is only visible
within this class. This helps reduce mistakes when using internal data of a class by other classes or
modules. You have public methods and variables that are accessible by all others and you have
private methods and variables that should only be used by the class itself and those public methods.
Further reasons for hiding data are:

Internal variables, which are externally visible, mixing up the API for other coders etc. Hiding them
leads to small, smart classes with a few variables and methods visible to others. If a variable is
visible you must document it. Hiding variables reduces documentation time.

Scope modifiers
To hide variables or methods you must declare them as ‘Private’:
Class plane

 Private wings As Integer ' only visible within this class

 Private Funcion countWings() ' only visible within this class
 ...
 End Function

End Class

A private variable is visible for the class in which it has been declared. This means the methods of
this class can only use this private variable. Private methods and variables are not visible to child
classes of the class in which they are declared (in fact they are present in the memory of that object,
but not visible). Non-private methods and variables are always visible to child classes.

Besides ‘Private,' there exists ‘Public’ and ‘Protected’ as scope modifiers. Protected is useful if the
variable or method should be visible only to child classes and the class in which they are declared.
Public means that every part of your program (any other class or module) can access and use the
public declared part of your class (variable or method). The default modifier is ‘Public.' If you do
not write ‘Public’ in front of your variable or method, it is automatically declared as public.

Some tips for using scope modifiers
Use ‘Private’ for methods and variables used only in the class, but not outside. Use ‘Public’ for
methods and variables that are used and accessible from everywhere.

Abstract Classes and Methods
It is possible in KBasic to define methods that have no code, but can be used as an template for
child classes. This technique is called ‘abstract declaration.' Abstract methods are useful when you
do not have code in a method of a parent class but must be present in the parent class for design
reasons. Child classes now are forced to implement this method with some code in it. It is also
possible to mark a complete class as abstract; you cannot create an object of that class because this
class contains declarations but no code. The code should be included in the child classes, which can
that be used after the ‘New’-keyword.

Normally, you do not use abstract methods or classes, but it could be useful. Some rules when
dealing with abstract: Every class containing an abstract method is automatically declared as
abstract. An abstract class must contain at least one abstract method.

44 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

An abstract class cannot be used to create an object. A child class of an abstract class can be used to
create an object if all abstract methods have been overridden with a code implementation. It is non-
abstract now. If a child class of an abstract class does not override all abstract methods it become an
abstract class.

Arrays
If you have worked with other programming languages, you understand the concept of arrays.
Arrays are variables that look like a chain. All elements of that chain have the same data type and
can be accessed by an index. These variables have one name but a different index and are placed as
one block in memory. You can use the array as one block or as one element of the array. Arrays are
declared the same as other variables are declared (use ‘Dim’, ‘Static’, ‘Private’, ‘Public’ or
‘Protected’).

Using arrays leads to cleaner, more flexible code because you can use loops to use or access
thousands of variables (the arrays). Arrays have an upper and a lower boundary and elements of that
array are between those boundaries. If an array has the data type ‘Variant,' each element of the array
can contain a different data type.

Different kinds of arrays
There are two types of arrays that differ in one issue: one type has a fixed size while compiling and
the other type changes its size dynamically at runtime.

• Dynamic array: changes the number of indexes at runtime
• Static array: fixed number of indexes

It is possible not to know the length of an array while coding or you would like to change its size at
runtime. Another advantage to dynamic arrays is that you can free memory when using dynamic
arrays. Static arrays are always in memory.

Declaration
Declare an array using ‘Dim’ and length declaration in () or []:

Syntax:
Dim variableName(Index) As Type

Dim variableName[Index] As Type

Dim variableName[Index, Index, ...] As Type

Dim variableName[Index To Index] As Type

Dim variableName[Index To Index, Index To Index, ...] As Type

Example:
Dim i(100) As Integer
Creates an array with 100 'Integer'-variables.
Accessing array elements
Access an element of an array when you write an integer expression in braces ()
or [] after the name of an array:
i(3) = 10

45 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Access with position. The position is 1 in the example:
i(1) = 0

The index is always checked. If it is too small or too big you run into an error. This is a further
feature of KBasic to avoid program crashes. The expression, which stands for the index, can be
calculated at runtime. Any numerical expression is allowed:
n = 100
Dim i(n) As Integer

Getting lower and upper bound
UBound is used for the upper bound:
UBound (arrayVar [,(Dimension])

LBound is used for the lower bound:
LBound (arrayVar [,(Dimension])

Default: An array with declared 10 elements is counted from 0..10 (including 10). Therefore, 0 and
10 are usable indexes and there are 11 elements declared. In fact, an array contains always one more
element than declared when you do not specify lower and upper bound.

Explicitly declaring the lower bound
Dim i(50 To 100) As Integer

This creates an array with a lower bound of 50. Example:
Dim curCosts (364) As Currency

Sub createArray ()
 Dim curCosts (364) As Currency
 Dim intI As Integer

 For intI = 0 To 364
 curCosts (intI) = 20
 Next
End Sub

Changing the lower bound
Use the ‘Option Base’-statement on top of an class or module file to change the default index of an
array element from 0 to 1. In the following example, the first accessible index will be 1:
Option Base 1

Dim curCosts(365) As Currency

Change the upper bound of an array using the ‘To’-keyword. Example:
Dim curCosts(1 To 365) As Currency
Dim sWeekday(7 To 13) As String

46 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Use of multidimensional arrays
KBasic supports multidimensional arrays as well. The number of dimensions is limited to 32. To
create a multidimensional array:
Dim i(100, 50, 400)

The following statement declares a two-dimension array:
Dim sngMulti(1 To 5, 1 To 10) As Single

An array with two dimensions is like a matrix. The first argument can be considered the row and the
second the column. If you use arrays with two dimensions or more, you can easily use the ‘For-
Next’ loop to iterate and access the elements of that array.
Sub changeArray ()
 Dim intI As Integer, intJ As Integer
 Dim sngMulti(1 To 5, 1 To 10) As Single

 ' set values of array
 For intI = 1 To 5
 For intJ = 1 To 10
 sngMulti(intI, intJ) = intI * intJ
 Print sngMulti(intI, intJ)
 Next intJ
 Next intI
End Sub

Save 'Variant'-values in arrays
There are two ways to create arrays with elements of type ‘Variant.' First, you can create an array
with data type ‘Variant.' Example:
Dim varData(3) As Variant
varData(0) = "Christiane Roth"
varData(1) = "60529 Frankfurt"
varData(2) = 26

You can also use the ‘Array’-Function, which returns an array of type ‘Variant’ to create an array.
Example:
Dim varDaten As Variant
varData = Array(" Christiane Roth", "60529 Frankfurt", 26)

Accessing the array is the same for both methods: use the index. Example:
Print "Data " & varDaten(0) & " has been stored."

Change the size of a dynamic array
Declare the array using the ‘Dim’-statement without the index expression but with braces () or [],
e.g.
Dim a() As Integer

Reserve the right count of array elements with ‘Redim.' The statement ‘Redim’ can only be used
inside procedures. It has the same syntax as ‘Dim.' Every ‘Redim’-statement can change the number

47 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

of elements and also the lower and upper bound of that array. The number of dimensions cannot be
changed with ‘Redim’.

Every time you use ‘Redim,' all values of the array are deleted if you do not use the keyword
‘Preserve.' KBasic sets the values to ‘Empty’ (when type is ‘Variant’), or value 0 (numerical types),
or “” (if ‘String’). Object types will be ‘Null’. Example:
Function calc() As Integer
 Dim Matrix1 () As Integer

 Redim Matrix1 (22, 33)
 ...

You can also use variables instead of literals:
Redim Matrix1 (a, b)

Syntax:
Redim variableName(Index)

Redim variableName[Index]

Redim variableName[Index, Index, ...]

Redim variableName[Index To Index]

Redim variableName[Index To Index, Index To Index, ...]

Array-reset / array-delete

The command ‘Erase’ deletes arrays and frees the memory of arrays.
Erase array1[, array2]

Control of the program flow
The statements that make the decision and loops are known as control structures.

Decisions
The term ‘decisions’ refers to the use of conditional statements to decide what to execute in your
program. Conditional statements test if a given expression is ‘True’ or ‘False.‘Then, statements are
executed. Normally a condition uses an expression in which a comparison operator is used to
compare two values or variables. KBasic supports all VB6 conditional statements and more.

48 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Single decision - If
A single decision is used to execute a set of statements if a condition is set (‘If’-statement). If the
condition is ‘True’ then the statements after the ‘Then’ are executed and the statements after the
‘Else’ are skipped. If the condition is ‘False,' the statements after the ‘Else’ are executed. If the item
after ‘Then’ is a line number, a goto is executed. If the condition is ‘True’ and there is no ‘Then’
statement on the same line, statements are executed until a line with an ‘End If’ is found. If you run
in ‘KBasic Mode’ the expression must be a boolean expression, otherwise any other numerical
expression is allowed. Syntax:
If Expression Then Statement

If Expression Then Statement : Else Statement

If Expression Then LineNo

If Expression Then LabelName:

If Expression Then
 [Statements]
End If

If Expression Then
 [Statements]
Else
 [Statements]
End If

If Expression Then
 [Statements]
ElseIf Expression
 [Statements]
Else
 [Statements]
End If

If Expression Then
 [Statements]
ElseIf Expression
 [Statements]
ElseIf Expression
 [Statements]
Else
 [Statements]
End If

If Expression Then
 [Statements]
ElseIf Expression
 [Statements]
End If

‘Else’ introduces a default condition in a multi-line ‘If’-statement.

‘ElseIf’ introduces a secondary condition in a multi-line ‘If’-statement.

‘End If’ ends a multi-line ‘If’-statement.

‘If’ evaluates ‘expression’ and performs the ‘Then’-statement if it is ‘True’ or (optionally) the

49 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

‘Else’-statement if it is ‘False’. KBasic allows multi-line ‘If’-statements with ‘Else’ and ‘ElseIf’
cases, ending with ‘End If’. This works as zero is interpreted to be ‘False’ and any non-zero is
interpreted to be ‘True’

Example:
Dim i As Integer
Dim n As Integer

If i 1 Then
 n = 11111
ElseIf i = 2 * 10 Then
 n = 22222
Else
 n = 33333
End If

IIf – short if
IIf returns a value of two values depending on an expression. Example: testing = IIf(Test1 > 1000,
“big”, “small”)

Syntax:
IIf(Expression, ThenReturnExpression, ElseReturnExpression)

Select Case
The ‘Select Case’-statement is much more complicated than the ‘If’-statement. In some situations,
you may want to compare the same variable or expression with many different values and execute a
different piece of code depending on which value it equals to. This is exactly what the ‘Select
Case’-statement is for. ‘Select Case’ introduces a multi-line conditional selection statement. The
expression given as the argument to the ‘Select Case’-statement will be evaluated by
‘Case’-statements following. The ‘Select Case’-statement concludes with an ‘End
Select’-statement. As currently implemented, ‘Case’-statements may be followed by string values,
in this case complex expression can be performed. The test expression can be ‘True,' ‘False,' a
numeric, or string expression. ‘Select Case’ executes the statements after the ‘Case’-statement
matching the ‘Select Case’-expression, then skips to the ‘End Select’-statement. If there is no match
and a ‘Case Else’-statement is present, then execution defaults to the statements following the ‘Case
Else.' Syntax:
Select Case Expression
Case Expression
 [Statements]
Case Expression
 [Statements]
End Select

Select Case Expression
Case Expression
 [Statements]
Case Expression To Expression
 [Statements]
Case Is Expression
 [Statements]
Case Else

50 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

 [Statements]
End Select

Example:
Dim i As Double
Dim n As Integer

i = 4

Select Case i
Case 0
 n = 0
Case 1, 2
 n = 1122
Case 4 TO 10
 n = 441000
Case Is = 9
 n = 9999
Case Else
 n = 999999
End Select

Switch – short select case
‘Switch’ returns a value depending on an expression. Example:
Dim s As String
Dim i As Integer
i = 1
s = Switch(i = 1, "Bible", i = 2, "Casanova")
Print s

Syntax:
Switch(Expression, ReturnExpression[, Expression, ReturnExpression, ...])

Choose – short select case
‘Choose’ returns one value from a list of values depending on the index.
Dim s As String
s = Choose(1, "un", "deux", "troi")
Print s

Syntax:
Choose(Expression, ReturnExpression[, ReturnExpression, ...])

Unconditional jumping
Most of this chapter has been dedicated to conditional branches. If you recall, however,
programmers can also use unconditional branches. This type of branching can be performed using
the ‘GoTo’-instruction. ‘GoTo’ forces program execution to branch to a specific line number or
label. Because line numbers in KBasic programs are now obsolete, you do not have to worry about
how to use them. You may, however, want to use labels. ‘GoTo’ performs a unconditional jump.

51 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

‘GoTo’ is always executed, without a condition. Syntax:
GoTo {LineNo | Label:}

GoTo myExit:
GoTo nextStep:

With-Statement A very useful statement is the ‘With’-statement. When using the ‘With’-statement,
you are able to group assignments or statements that reference the same object. This makes your
code becomes more readable in addition to reducing redundant code.
Sub formSection ()
 With myClass.
 .Value = 30
 .Font.Bold = True
 End With
End Sub

You can write a ‘With’-statement inside another ‘With’-statement:
Sub setValue ()
 With j(3)
 .e.bkname = "Frankfurter Zoo"
 With .e
 .isbn (99) = 333
 End With
 End With
End Sub

Loop-statements
The statements that control decisions and loops in KBasic are called control structures. Normally
every command is executed only one time but in many cases it may be useful to run a command
several times until a defined state has been reached. Loops repeat commands depending upon a
condition. Some loops repeat commands while a condition is ‘True,' other loops repeat commands
while a condition is ‘False.' There are other loops repeating a fixed number of times and some
repeat for all elements of a collection.

For Next
The For-Next loop is useful when you know how often statements should be repeated. For-Next
defines a loop that runs a specified number of times.

Syntax:
For counter = start To stop [Step stepExpression]
 [Statements]
Next [counter]

‘Counter’ is a numerical variable used to store the current counter number while the loop is running.
‘Start’ is a numerical expression that determines the starting value of the loop countings. ‘Stop’ is a
numerical expression that determines the ending value at which the loop will stop. To count in steps
other than the default value of 1, use ‘stepExpression’ to determine a specific value for
incrementing the counter. If you use ‘Exit For,' this exits the ‘For Next’ loop immediately and
continues with the line following to the ‘Next’ statement. This is usually used in connection with an

52 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

‘If’ clause (If something Then Exit For) to exit the loop before its specified end.

The ‘Next’ statement is the lower end of the loop and increments ‘counter’ by the value given by
‘stepExpression’ or by 1 if no ‘stepExpression’ incrementation is defined. The loop repeats as long
as the value of ‘counter’ is smaller/less than or equals the value of ‘stop.' The indication of ‘counter’
may be left out for the ‘Next’ statement, however this is depreciated as it can lead to confusion
when nesting several ' ‘For Next’ loops.

Notes: The speed of ‘For Next’ loops depends on the variable types used. ‘For Next’ loops run
fastest when ‘counter’ is an integer variable and ‘start,' ‘stop,' and ‘stepExpression’ are integer
expressions. Count backwards using ‘stepExpression’ with a negative incrementation value. Take
extra care when nesting ‘For Next’ loops. Remember to end the loop last initiated (see example) or
an infinite loop occurs.

’ Example 1:
Dim ctr As Integer

For ctr = 1 To 5
 Print "Z";
Next ctr

' Output:
' ZZZZZ

' Example 2:
' Here we use STEP
' The resulting string is the same
' as in example 1

Dim ctr As Integer

As Integer ctr = 1 To 50 Step 10
 Print "Z";
Next ctr

' Output:
' ZZZZZ

' Example 3:
' These are nested loops.
' The "y" loop is the INNER one
' and thus will end first:

Dim x, y As Integer

For x = 1 To 5
 Print "Line" + Str$(x)
 For y = 1 To 5
 Print "Z";
 Next y
 Print "-"
Next x

' Output:
' Line 1
' ZZZZZ-
' Line 2

53 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

' ZZZZZ-
' Line 3
' ZZZZZ-
' Line 4
' ZZZZZ-
' Line 5
' ZZZZZ-

Optimize For...Next-Loops
Use counter variables of type ‘Integer’ instead of ‘Variant,' because ‘Integer’ is much faster.

Example:
Dim rabbit As Integer ' counter of type Integer

For rabbit = 0 To 3276
Next rabbit

Dim hedgehog As Variant ' counter of type Variant.

For hedgehog = 0 To 3276
Next hedgehog

The first example runs faster. The smaller the data type, the faster it runs. Variables of type ‘Variant’
are always slower than the directly used data type.

Other kind of loops
Use the following loops when you are not sure how often a command should be repeated: ‘Do’,
‘While’, ‘Loop’, ‘Until’ or (‘Wend’) . There are two different ways to use the keyword ‘While’ in
order to test a condition within a ‘Do…Loop’-statement. You can test the condition before the
commands inside the loop are executed or you can test the condition after the commands of the loop
have been executed at least once. If the condition is ‘True’ (in the following procedure
‘SubBefore’) the commands inside the loop execute. If you set ‘myNumber’ to 9 instead of 20, no
command inside the loop execute. Inside procedure ‘SubAfter,' all commands execute at least once
because the condition is not true.
Sub SubBefore()
 Counter = 0
 myNumber = 20
 Do While myNumber > 10
 myNumber = myNumber - 1
 Counter = Counter + 1
 Loop
 MsgBox "Loop has been executed " & Counter & " time(s)."
End Sub

Sub SubAfter()
 Counter = 0
 myNumber = 9
 Do
 myNumber = myNumber - 1
 Counter = Counter + 1
 Loop While myNumber > 10
 MsgBox "Loop has been executed " & Counter & " time(s)."

54 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

End Sub

Two possibilities allow you to use the keyword ‘Until’ to test a condition of a ‘Do…
Loop’-statement. You can test the condition before the loop (see procedure ‘SubBefore’ in the
example), or you can test the condition after the loop has been entered (see procedure ‘SubAfter’ in
the following example). The loop repeats as long as the condition is ‘False’.
Sub SubBefore()
 Counter = 0
 myNumber = 20
 Do Until myNumber = 10
 myNumber = myNumber - 1
 Counter = Counter + 1
 Loop
 MsgBox "Loop has been executed " & Counter & " time(s)."
End Sub

Sub SubAfter()
 Counter = 0
 myNumber = 1
 Do
 myNumber = myNumber + 1
 Counter = Counter + 1
 Loop Until myNumber = 10
 "Loop has been executed " & Counter & " time(s)."
End Sub

Do While...Loop
A ‘Do While’ loop is a group of statements enabling you to define a loop that will repeat until a
certain condition remains ‘True’. ‘Do’: launches the loop and must be the first statement ‘Loop’:
ends the loop and must be the last statement ‘While’: lets the loop repeat while the condition is
‘True’ Condition: a numeric or string expression with a result of ‘True’ or ‘False’ ‘Exit Do’: exits
the loop at this very line and lets the program continue behind the ‘Loop’-statement ‘Iterate Do’:
jumps directly to the ‘Loop’-condition

Syntax:
Do While Expression
 [Statements]
Loop

Examples: In the first example, the loop repeats as long as ‘xyz’ remains 5:
Do While xyz = 5
(lines of code)
Loop

Please note the lines of code will never be executed if ‘xyz’ is not 5 when entering the loop. To
overcome the problem of “never executed code” move the condition to the end of the loop:
Do
 (lines of code)
Loop While xyz = 5

Now the lines of code execute at least one time before the loop checks for the value of ‘xyz’ and

55 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

decides whether to exit or repeat execution. If there is a second condition that arises somewhere
within the loop making it necessary to exit the loop before the lines of code within it end, the
‘Exit’-statement may be helpful:
Do
 (lines of code)
 If abc = 0 Then Exit Loop
 (lines of code)
Loop While xyz <> 5

If ‘abc’ becomes zero at the ‘If’-statement within the loop, the program exits the loop. The rest of
the code lines are skipped. Sometimes it is necessary to skip the rest of the code lines but
nevertheless stay in the loop to be repeated. Now you may use ‘Iterate’ instead:
Do
 (lines of code)
 If abc = 0 Then Iterate Loop
 (lines of code)
Loop While xyz <> 5

If ‘abc’ becomes zero at any moment within the loop,the program skips the rest of the code lines
within the loop and jumps directly to its “Loop While xyz = 5." The loop checks for the value of
xyz and decides what to do. You may use the condition with a number of expressions like ‘And’ and
‘Or’:
Do While x < 10 And y < 10
 (lines of code)
Loop

The loops repeats while x and y are smaller than 10. Note: Please be careful when nesting several
loops within each other. Sometimes a variable checked for the outer loop is changed within the
inner loop. In this case, the outer loop never ends:
Do While counter < 10
 (lines of code)
 counter = 0
 Do
 counter = counter + 1
 Loop While counter <> 5
Loop

Good programming practice would recommend using separate variables for each loop. The same
might happen with a ‘For…Next’ loop within:
Do While counter < 10
 (lines of code)
 For counter = 1 To 5
 (lines of code)
 Next counter
Loop

Moreover, be careful not to interchange the different loops:
Do While counter < 10
 (lines of code)
 For i = 1 TO 5
 (lines of code)
 Loop

56 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Next i

This results in an error because ‘Loop’ has to appear after ‘Next.'
x = 5
Do While x = 5
 Print x
Loop

Do...Loop Until
A ‘do loop until’ repeats until a condition is set. Example:
x = 0
Do
 Print x
 x = x + 1
Loop Until x > 3

Syntax:
Do
 [Statements]
Loop Until Expression

Do...Loop While
A ‘do loop while’ repeats while a condition is set. Example:
x = 0
Do
 Print x
 x = x + 1
Loop While x < 3

Syntax:
Do
 [Statements]
Loop While Expression

Do Until...Loop
The ‘do until loop’ is a group of statements enabling you to define a loop that repeats until a certain
condition remains ‘True.'
x = 0
Do Until x > 3
 Print x
 x = x + 1
Loop

Syntax:
Do Until Expression
 [Statements]
Loop

57 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

While...Wend
‘While’ initiates a ‘While…Wend’-loop. The loop ends with ‘Wend’ and execution reiterates
through the loop as long as the expression is ‘True’. Example:
While True
 Print 1234
Wend

Syntax:
While Expression
 [Statements]
Wend

While...End While
This is the same as ‘While…Wend’, but with slightly different keywords. This loop reiterates
through the loop as long as the expression is ‘True’.
While True
 Print 1234
End While

Syntax:
While Expression
 [Statements]
End While

Explicitly leave a loop
Normally a loop ends when its condition allows it. Sometimes it might be useful to exit a loop
before the condition is met. Manually exit a loop using the ‘Exit Do’-statement. To leave
‘For’-loops, use ‘Exit For’.

• ‘Exit For’ – leave a for loop
• ‘Exit Do’ – leave a do loop

For example, use ‘Exit Do’ in a ‘If’-statement or ‘Select Case’-statement if you want to leave an
infinity loop.

Syntax:
Exit For
Exit Do

Explicitly test a condition
A loop condition is tested after every loop iteration. However, it might be useful to test the loop
condition earlier. Manually test a loop condition using the ‘Iterate Do’-statement. As a result, the
current loop condition is tested. To test ‘For’-loop conditions, use ‘Iterate For’.

• ‘Iterate For’ – manually test loop condition for a ‘For’-loop
• ‘Iterate Do’ – manually test loop condition of a ‘Do’-loop

Syntax:

58 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Iterate For
Iterate Do

Nested control structures
Embed control structures into other control structures by putting a ‘For’-loop into an ‘If’-statement.
This is called nested control structures. You can embed as many control structures as needed, but
you should indent every control structure line so that your code is easier to read. The examples in
this book are always intended and formatted.

Procedures
Your programs have been short, each designed to demonstrate a single programming technique.
When you start writing real programs, however, you will discover they can grow to many pages of
code. When programs increase in length, they become harder to organize and read. Professional
programmers use modular programming to decrease the length of programs. Modular programming
uses procedures. A procedure is like a small program within your main program. KBasic source
code is inside a procedure, normally. A procedure is a set of commands inside the written words
‘Sub’ and ‘End Sub’ or ‘Function’ and ‘End Function’. There are different types of procedures.

• Sub (inside a module or class) - Sub-procedures contain commands and statements but do
not return a value or cannot be used in expressions. Event-procedures are always sub-
procedures. An event-procedure is related to a form or control. When KBasic notices an
event of a control occurred, it calls the related event-procedure.

• Functions (inside a module or class) - Function-procedures contain commands and
statements. Function-procedures always return a value, e.g. the result of a complex math
operation. Because functions return values, they can be used in expressions. Functions like
subs can have arguments.

• Sub (inside a class) - Better named as method, without return value. This is like a sub-
procedure.

• Function (inside a class) - Better named as method with return value. This is like a function-
procedure

Sub-Procedure
A sub-procedure can have arguments, e.g. variables, expressions, or constants that are given to the
sub-procedure while calling it. Many built in-functions of KBasic have arguments.

Syntax:
Sub Name([Arguments])
 [Statements]
End Sub

Sub Name([Arguments]) [Throws Name, ...]
 [Statements]
End Sub

Function-Procedure
A sub-procedure can have arguments, variables, expressions, or constants that are given to the sub-
procedure when calling it. Function-procedures return values. Many built in-functions of KBasic

59 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

have arguments (e.g. Abs). Syntax:
Function Name([Arguments]) [As Type]
 [Statements]

End Function

Function Name([Arguments]) [As Type] [Throws Name, ...]
 [Statements]
End Function

Arguments
For all practical purposes, a procedure can have as many arguments as needed. You must be sure the
arguments you specify in the procedure’s call exactly match the type and order of the arguments in
the procedure’s sub line. To use more than one argument in a procedure, separate the arguments
with commas. You can pass one or more arguments to a procedure. Keep in mind the arguments are
passed to the procedure in the order in which they appear in the procedure call. The procedure’s sub
line must list the arguments in the same order they are listed in the procedure call. If a procedure
does not have arguments, you must not write any expression or variable inside the braces when
calling it.

All statements and commands are executed only after calling the procedure. Arguments have
names. If you have many arguments, you can separate them by a comma (,). Every argument is like
a variable declaration and leads to automatically declared variables when the statements and
commands of a procedure are executed.

Syntax of arguments:
Name As Type

[ByVal | ByRef] Name As Type

[ByVal | ByRef] Name [As Type]

[ByVal | ByRef] Name [()][As Type]

[ByVal | ByRef] [Optional] Name [()][As Type] [= Expression]

The type can be one of the built in types (scalar types), ‘Variant’ or object/class type. If you do not
tell KBasic the type, it assumes the default type that is normally ‘Variant’.

‘ByRef’ and ‘ByVal’ are modifiers. If you call a procedure and one argument is a variable and the
matching argument is declared ‘ByRef’, then KBasic performs all operations on that argument on
the given variable and does not copy the variable’s value. ‘ByVal’ leads to a copy of the variable’s
value. If the commands inside the procedure changes the value of the argument, the variable is not
affected. If you use ‘ByRef’ it is changed!

Named and optional arguments
There are two ways to give arguments to a procedure. One is to name the arguments, the other is the
position relevant (default) one. Arguments – the normal way:
PassArg(Frank", 26, #2-28-79#)

60 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Named arguments:
PassArg(intAge = 26, birthDate := #2/28/79#, strName := "Frank")

If you use named arguments, you are able to list the arguments in the order as you like. It is
probably more readable. Example:
Sub passArg(strName As String, intAge As Integer, birthDate As Date)
 Print strName, intAge, birthDate
End Sub

A named argument contains the argument name, colon (:) and equal sign (, and the
expression the argument should have. Named arguments are also useful when you use procedures
with optional arguments. Optional arguments are not always present in the procedure, depends upon
if they have been given to the procedure. Optional arguments can have default values as seen in the
following example:
Sub optionaleArg(str As String, Optional strCountry As String = "Germany")
...
End Sub

If you do not give a optional argument to a procedure, the default value is used.

It might be useful to check the argument with the ‘IsMissing’-function:
Sub optionalArg(str As String, _
Optional strCountry As String = "Germany")
 If IsMissing(strCountry) Then
 Print str
 Else
 Print str, strCountry
 End If
End Sub

You can call the procedure above with the following lines:
optionalArg(str := „test1“, strCountry := "Germany")
optionalArg(str := „test1“)

Arguments with a default value are also possible as seen in the following example:
Sub optionaleArg(str As String, strCountry As String = "Germany")
...
End Sub

Writing function-procedure
A function-procedure contains commands and statements, which are after ‘Function’ and before
‘End Function.' A function-procedure is like a sub-procedure but it can return a value. That is the
only difference between them. A function-procedure can also have arguments. A value can be
returned using the function name as an variable, which is used in an assignment statement (old
style). You should use the keyword ‘Return’ for return values (new style). Example:
Sub Main()
 temp = InputBox(Prompt:= _
 "Fahrenheit?")

61 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

 MsgBox "Fahrenheit = " & Celsius(temp)
End Sub

Function Celsius(fGrad)
 Celsius = (fGrad - 32) * 5 / 9
End Function

Main()

Call of sub-procedures and function-procedures
To call a sub-procedure within another procedure, write the name of the sub-procedure to call and
all needed arguments. The keyword ‘Call’ is not needed. If you use it, all arguments must be placed
inside braces. You ought to use procedures to organize and split your code to get it more readable.
Example:
Sub Main()
 MultiBeep 56
 DoMessage
End Sub

Sub MultiBeep(no)
 Dim counter As Integer
 For counter = 1 To no
 Beep
 Next counter
End Sub

Sub DoMessage()
 Print "Tee time!"
End Sub

Main()

Add comments to a procedure
When creating a new procedure or changing code, comment the new or changed code. Comments
have no effect on the program when it is executed, they only help other developers understand the
code. Comments start with ('). This character tells KBasic to ignore all text until reaching the end of
line. Find more information about comments in the previous chapter about comments. Call of
procedures with same name You can call a sub-procedure from everywhere. If it is a different
module, it might be useful to use module name to address the sub-procedure. Example:
Sub Main()
 Module1.myProcedure()
End Sub

Hints for calling procedures
When changing the name of classes or modules, be sure to change all places the class or module is
used or KBasic runs into an error. You could use the file replace in the KBasic menu. To avoid name
collisions, give your procedures unique names.

62 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Leave procedure
You can leave the procedure at any line inside of a procedure. For that, use the keywords ‘Exit Sub’
inside a sub-procedure or ‘Exit Function’ inside a function-procedure.
Syntax:

Exit Sub

Exit Function ' inside a function-procedure

Calling procedures with more than one argument The following example shows calling a sub-
procedure with more than one argument.
Sub Main()
 costs (99800, 43100)
 Call costs (380950, 49500) ' old style
End Sub

Sub costs (price As Single, income As Single)
 If 2.5 * income <= 1.8 * price Then
 Print "House to expensive."
 Else
 Print "House is cheap."
 End If
End Sub

Use of brackets while calling a function-procedure

In order to get the return value of a function-procedure, you need a variable. Example:
answer3 = MsgBox("Are you satisfied with your income?")

If you do not need the return value, ignore it and use the function-procedure like an ordinary sub-
procedure. Example:
MsgBox "Task done!"

Writing recursive procedures
Procedures have limited memory, so if a procedure calls itself, it consumes memory again. When
procedures call themselves they are called recursive procedures. Example:
Function doError(Maximum)
 doError = doError(Maximum)
End Function

These errors can be hidden when two procedures are calling each other once and once again or if no
break out condition is used. In some situations recursive procedures might be useful. Example:
Function Fakulty (N)
 If N <= 1 Then ' end of recursive
 Fakulty = 1 ' (N = 0) no more calls
 Else ' Fakulty is called again
 ' wenn N > 0.
 Fakulty = Fakulty(N - 1) * N
 End If
End Function

63 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Carefully test a recursive procedure to verfiy it works as expected. If an error occurs, check the
break out condition. Try to minimize memory consumption:

Release unused variables
Avoid data type ‘Variant’ Check the logic of the procedure. Use loops inside loops instead of
recursion calls.

Overloading of procedures
In other languages, the name of the method (or function, or procedure) is enough to distinguish it
from other methods in the program. In KBasic, procedures are not only distinguished by their name
but also by their arguments. If you call a procedure and there are two or more procedures with the
same name, KBasic tries to verify which procedure you mean by checking the arguments.

Defining procedures with the same name, but different arguments is called overloading. It might be
useful in some situations. Do not mix it up with overriding.

Event procedures
When KBasic recognizes that a form or control has raised an event, it automatically calls the related
event-procedure within a form.

General procedures
KBasic calls an event-procedure after an event occurs. Normal procedures are only called explicitly.
If you need several event-procedures to perform a task, create one sub-procedure that is called
inside the event-procedure. This is better than copying all code in each event-procedure and
duplicating code. Create normal procedures in forms or modules. If the normal procedure is related
to a form only, place it there. If it is related to the entire program, place it in a module.

Functions
Functions are very similar to subs in that both are procedures, but functions return a value and can
be used in expressions.

Syntax:
Function Name([Arguments])[As Type]
 [Statements]
End Function

Function Name([Arguments])[As Type] [Throws Name, ...]
 [Statements]
End Function

The arguments of a function-procedure are used as the arguments of a sub-procedure. Define a
function-procedure by using the keyword ‘Function.' You should also define a return type for every
function. For more information about using procedures see the previous chapter.

Data Types of functions
Just as variables have data types, function-procedures have data types. When you define a function

64 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

you also define a return type, which is the data type of the function. If you do not define a return
type, the default data type is assumed to be ‘variant.'

Function Return
If you would like to set the return value of a function and exit the function, use ‘Return.' With this
statement you immediately leave the function.

Syntax:
Return Expression

Properties
Most objects and controls have properties that you can think of as nothing more complicated than
attributes. For example, a ‘CommandButton’ control has a property called ‘Caption’ that determines
the text that appears in the button. Many other controls, such as the familiar ‘Label’ control, also
have a ‘Caption’ property. Some properties are common in KBasic whereas others are associated
with only a single control or object. Those properties are built into KBasic, but it is also possible to
define your own properties within your user defined class.

Defining a property is like defining a procedure. In fact, a property contains two property-
procedures. One property-procedure reads the property (Get) and the other writes the property (Set).
Additionally, you have to declare a variable that contains the value of the property. Why should I
use a property, when I use a variable instead? It is easier to access a variable but it might be useful
to check something when accessing a variable; with properties you are able to check values or
conditions when you try to access the property. It is like data hiding. You can code so that the value
of the property is always correct.

For details, please refer to the examples that come with KBasic.

Syntax:
Property Set Name(Argument)
 [Statements]
End Property

Property Get Name As Type
 [Statements]
End Property

Property Name As Type

 Get
 [Statements]
 End Get

 Set(Argument)
 [Statements]
 End Set

End Property

65 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Conversion
Normally you do not have to change the a data type of an expression. It is usually done for you
without notice. Sometimes it might be important to force a conversion because your calculating
would be else wrong. There exists some conversion built in-functions for any data type:
y% = CInt (expression) ' returns Integer
y% = CLng (expression) ' returns Long
y! = CSng (expression) ' returns Single
y' = CDbl (expression) ' returns Double
y@ = CCur (expression) ' returns Currency
y = CVar (expression) ' returns Variant
y = CBool (expression) ' returns Boolean
y = CByte (expression) ' returns Byte
y = CShort (expression) ' returns Short
y = CDate (expression) ' returns Date

Modifiers / Scopes
Modifiers and scopes are a very important aspect of the KBasic programming language and of
modern programming languages in general.

Scopes tell KBasic when a variable, a constant, or a procedure can be used, from which place in the
source code files, actually. There are different scopes (abstract places in code):

• Procedure scope
• Global scope
• Private module scope
• Public module scope

• Private class scope
• Protected class scope
• Public class scope

Scopes are useful when you would like to organize your program or want to avoid name collisions
of variables.

When you refer to a variable within your method definitions, KBasic checks for a definition of that
variable first in the current scope, then in the outer scopes of the current method definition. If that
variable is not a local variable, KBasic then checks for a definition of that variable as an instance or
class variable in the current class, and then, finally, in each parent class in turn.

Because of the way KBasic checks for the scope of a given variable, it is possible for you to create a
variable in a lower scope such that a definition of that same variable hides the original value of that
variable. This can introduce subtle and confusing bugs into your code. The easiest way to get
around this problem is to make sure you do not use the same names for local variables as you do for
instance variables. Another way to get around this particular problem, however, is to use
‘Me.variableName’ to refer to the instance variable and just variable to refer to the local variable.
By referring explicitly to the instance variable by its object scope you avoid the conflict.

Local scope
A variable declared inside a procedure is not usable outside the procedure, only the code of the
procedure in which the variable has been declared can use it. The following example demonstrates
how a local variable may be used. There are two procedures, one of them has a variable declared:

66 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Sub localVar()
 Dim str As String
 str = "This variable can only be used inside this procedure"
 Print str
End Sub

Sub outOfScope()
 Print str ' causes an parser error
End Sub

Private module scope
If you declare a variable as ‘Private,' it is only visible to the module in which it is declared. When
declared as ‘Public,' the variable is visible to the entire program (all modules and classes). Default
is ‘Private’ when you use the keyword ‘Dim’ to declare variables.
Example:
' add to the declaration section of your
' module the following lines
Private str As String

Sub setPrivateVariable()
 str = "This variable may be only used inside this module"
End Sub

Sub usePrivateVariable()
 Print str
End Sub

Public module scope
When you declare a variable as 'Public' inside a module, it is global and
visible to all parts of your program.
Example:
' add to the declaration section of your
' module the following lines
Public str As String

All procedures are as default ‘Public’ except the event-procedures because KBasic automatically
writes ‘Private’ for every event-procedure declaration. If you want to have a normal procedure as
‘Private,' write the keyword ‘Private’ before the declaration of that procedure.

User Defined Data Type (Type...End Type)
A user defined data type is very useful when object-orientated programming is not available. It is
like a class, many different variables are held together but without methods. Many kind of data
types are allowed inside a user defined data type, even other user defined data types can be
included.
Syntax:
Type Name
 Name [(Index)] As Type
 ...
End Type

67 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Enumeration (Enum...End Enum)
Enumeration is a new way of grouping constants related to the same subject. It is a list of names and
every name has a constant value.
Syntax:

Enum Name
 Name [= Expression]
 ...
End Enum

Classes
A simple application can contain a form, while all source code is inside the form module of that
form. But if the application grows bigger and bigger it might be useful, to write source codes from
different forms at one place, so you need a place to write the source codes down outside the forms.
Here comes the classes. Create a class, which contains a methods, which is useful for your forms.
You KBasic code is stored in classes or modules. You can archive your code within classes. Every
class consists of the declaration part and the methods you have inserted. A class can contain:

• Declarations - for variables, types, enumerations and constants
• Methods (also called procedures) - which are not assigned to a special event or object. You

can create as many procedures as you want, e.g. sub-procedures without return value or
function-procedures.

• Signal/Slots-Methods - These are special methods, which are only useful together with the
bindings. See the documentation of the bindings in the KBasic IDE for more information.

• Properties - Are variables, which are accessed through two special methods (get and set
method). Properties are accessable without the need to write braces, when you use them.

You can put several classes or modules in one file, but you should not do that.

Classes unlike procedures are not executed
A class consists of a declaration part only; you must create the methods yourself. Additionally, a
class contains no main program. Methods are executable inside classes and execute if the proper
event is raised or if another part of your program has called a method of that class.

Edit Class
It is not much different editing text in a word processor or in KBasic’s Software Atelier. You have a
cursor showing the current position you can type. You can also find and replace inside your source
code as in a word processor.

Syntax:
[Abstract] Class Name Inherits ParentClassName

 [Static] Dim Name As Type
 [Static] Public Name As Type
 [Static] Protected Name As Type
 [Static] Private Name As Type
 Const Name As Type
 Public Const Name As Type
 Protected Const Name As Type

68 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

 Private Const Name As Type
 ...

 [Public | Protected | Private]
 Enum Name
 Name As Type
 ...
 End Enum
 ...

 [Public | Protected | Private]
 Type Name
 Name As Type
 ...
 End Type
 ...

 [Public | Protected | Private]
 Property Name As Type

 Get
 [Statements]
 End Get

 Set(Argument)
 [Statements]
 End Set

 End Property
 ...

 [Public | Protected | Private]
 Constructor Name([Arguments])
 [Statements]
 End Constructor
 ...

 [Public | Protected | Private]
 Destructor Name()
 [Statements]
 End Destructor

 [Static] [Public | Protected | Private]
 Function Name([Arguments]) [As Type] [Throws Name, ...]
 [Statements]
 End Function
 ...

 [Static] [Public | Protected | Private]
 Sub Name([Arguments]) [Throws Name, ...]
 [Statements]
 End Sub
 ...

69 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

 [Public | Protected | Private]
 Slot Name([Arguments])
 [Statements]
 End Slot
 ...

 [Public | Protected | Private]
 Signal Name([Arguments])
 [Statements]
 End Signal
 ...

End Class

Bigger example:
Class Salsa Inherits Waltz

 Public Enum class_enum
 Entry
 Entry2
 Security = Entry
 End Enum

 Public Type class_type
 element As Integer
 End Type

 Const classConst = 4

 Public publicInstanceVar As Integer
 Private privateInstanceVar As Integer
 Protected protectedInstanceVar As Integer

 Static Public publicClassVar As Integer
 Dim publicModuleType As module1.module_type
 Dim publicModuleType2 As module_type

 ' parent constructor call inside constructor

 Sub meExplicit()
 Dim localVar = Me.publicInstanceVar ' it is the same with parent
 Dim localVar2 = Me.publicClassVar
 Dim localVar3 = Salsa.publicClassVar
 Dim localVar4 = Salsa.classConst
 Dim localVar5 = Me.classConst
'
 Dim localVar6 As class_enum
 localVar6 = Salsa.class_enum.Entry
' Dim localVar7 As Me.class_enum ' full type name not allowed
 Dim localVar8 As class_type
 End Sub

 Sub meImplicit()
 Dim localVar = publicInstanceVar
 Dim localVar2 = publicClassVar

70 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

 Dim localVar3 = classConst
 Dim localVar4 As class_enum
 Dim localVar5 As class_type

 End Sub

 Sub classSub()
 Const localConst = 6
 Dim n = localConst
 End Sub

 Sub classSubWithArgument(i As Integer)
 Dim localVar = i
 End Sub

 Function classFunction() As String
 Return "hello"
 End Function

 Static Public Sub test() Throws Waltz
 Throw New Waltz
 End Sub

 Private pvtFname As String

 Public Property Nickname As String

 Get
 Print "Hi"
 End Get

 Set (ByVal Value As String)
 Print "Hi"
 End Set

 End Property

End Class

Module
A simple application can consist of only one form while the complete source code is in one form
module. As your applications grow larger you probably would like to use the same code in different
forms. To do so, place this code in a global module file as it is accessible by the entire application.
You KBasic code is stored in classes or modules. You can archive your code within modules. Every
module consists of the declaration part and the procedures you have inserted.

A module can contain:

• Declarations - for variables, types, enumerations and constants
• Procedures - which are not assigned to a special event or object. You can create as many

procedures as you want, e.g. sub-procedures without return value or function-procedures.

You can put several classes or modules in one file but you should not.

71 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Global Modules
Global modules are always present. You can access them from everywhere in your program. Put
procedures you often use in forms or event-procedures within global modules.

Modules are not executed, unlike procedures are
A module consists of a declaration part only. You have to create the procedures for yourself.
Additionally, a module contains no main program. Procedures are executed if another part of your
program has called a procedure. Edit Module Editing your code in a word processor is no different
than in KBasic Software Atelier. You have a cursor showing the current position and you can use
find and replace inside your source code as in a word processor.

Syntax:
Module Name

 Dim Name As Type
 Public Name As Type
 Private Name As Type
 Const Name As Type
 Public Const Name As Type
 Private Const Name As Type
 ...

 [Public | Private]
 Enum Name
 Name As Type
 ...
 End Enum
 ...

 [Public | Private]
 Type Name
 Name As Type
 ...
 End Type
 ...

 [Public | Private]
 Function Name([Arguments]) [As Type] [Throws Name, ...]
 [Statements]
 End Function
 ...

 [Public | Private]
 Sub Name([Arguments]) [Throws Name, ...]
 [Statements]
 End Sub
 ...

End Module
<code>

72 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Bigger example:
<code>
Module module1

 Public Type address
 age As Integer
 End Type

 Public Type module_type
 element AS integer
 End Type

 Public Enum module_enum
 Entry
 Entry2
 Security = Entry
 End Enum

 Const moduleConst = 7

 Public publicModuleVar As Integer
 Private privateModuleVar As Integer

 Sub moduleExplicit()
 Dim localVar = module1.publicModuleVar
 Dim localVar2 = module1.moduleConst
 Dim localVar3 As module_enum
 localVar3 = module1.module_enum.Entry
 End Sub

 Sub moduleImplicit()
 Dim localVar = publicModuleVar
 Dim localVar2 = moduleConst
 Dim localVar3 As module_enum
 localVar3 = module_enum.Entry
 Dim localVar4 As module_type
 End Sub

 Sub moduleSubWithDefaultArgument(ko As Integer = 6)
 Dim localVar = ko
 End Sub

 Sub moduleSubWithOptionalArgument(Optional ko As Integer)
 If Not IsMissing(ko) Then
 Dim localVar = ko
 End If
 End Sub

 Sub moduleSub()
 Const localConst = 6
 Dim n = localConst
 End Sub

 Sub moduleSubWithArgument(i As Integer)
 Dim localVar = i
 End Sub

73 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

 Sub moduleSubWithArgumentShadowing(i2 As Integer)
 Dim localVar = i2
 Dim i2 = localVar + 99
 Dim i3 = i2
 End Sub

 Sub subOverloading ()
 Print "sub1"
 End Sub

 Sub subOverloading (i As Integer = 1)
 Print "sub2"
 End Sub

 Function moduleFunction() As String

 subOverloading()
 subOverloading(88)

 Return "hello"
 End Function

 Function moduleFunctionRecursive(ByRef i As Integer) As Integer
 If i > 6 Then Return 1''i

 ''i = i + 1
 Return moduleFunctionRecursive(1)''i)
 End Function

End Module

Error handling
Developers in any language always wanted to write bug-free programs, programs that never crash,
programs that can deal with any situation with grace and that can recover from unusual situations
without causing the user any undue stress. Good intentions aside, programs like this do not exist. In
real programs, errors occur either because the programmer did not anticipate every situation the
code would get into or because of situations out of the programmer’s control, bad data from users,
corrupt fields that do not have the right data in them, and so on.

Three possible error sources exist:

• Error while compiling - These kind of errors occur when statements are written incorrectly.
Maybe you wrote a keyword wrong, or misused a keyword in the wrong place, or you forgot
to write all needed marks (braces, dots and so on).

• Runtime error - These kind of errors occur when KBasic finds an error when your program
executes. An example of such an error is a division by zero, which is not allowed in any
math expression.

• Logic error – Logic errors occur when syntax and runtime behavior is okay, but the program
does not work as intended or expected. You can only be sure that your program works as you
want if you test and analyze any result.

When a runtime error occurs, KBasic stops the execution of your program if no error handler has
been defined in the place the error occurred. Old error handling syntax is supported like ‘On Error
GoTo,' but you should use the new error handling syntax (exceptions).

74 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Exceptions
In KBasic, the strange events/errors that may cause a program to fail are called exceptions.
Exception handling is an important feature of KBasic. An exception is a signal showing that a non-
normal stage has been reached (like an error). To create an exception means to signal this special
stage. To catch an exception is to handle an exception; performing some commands to deal with this
special stage to return to a normal stage.

Example:
Public Sub tt2() Throws samba

 Try
 test()
 Catch (b As rumba)
 Print "tt2: got you!"
 b.dance()
 Finally
 Print "tt2: will be always executed, whatever happend"
 End Catch

End Sub

Exceptions are walking from the origin to the next control structure (caller of the current
procedure). First it is tested if a ‘Try-Catch’-statement or a throw statement has been defined in the
current scope (procedure etc.). If not, KBasic looks up the caller of the current scope and tries again
to find a ‘Try-Catch’-statement or a ‘Throw’- statement and so on. If it is not caught, KBasic shows
the error to the user and the execution of the program stops. Exception-objects

An exception is an object that is an instance of a ‘Object’ or any other class. Because exceptions are
objects, they can contain data and methods as any other class or object. Exception handling

The ‘Try-Catch’-statement is needed to catch an exception. ‘Try’ encloses the normal code, which
should run fine. ‘Catch’ contains the commands that should be executed if an exception has been
raised. ‘Finally’ has some commands that should be executed whether an exception has happened or
not.
Try
'Try' encloses the normal code, which should run fine. 'Try' does not work
alone. It comes with at least one 'Catch'-statement or 'Finally'-statement.
Catch

After a ‘Try’ and its commands, define as many ‘Catch’-statements as necessary. ‘Catch’-statements
are like a variable declaration, but the exception object is only created, then it matches.

Finally
‘Finally’ is useful when you have file accessing or database closing commands that must always
execute even when an exception occurs. If you have defined a ‘Catch’-statement and
‘Finally’-statement and the matching exception is raised, first the ‘Catch’-statement executes,then
the ‘Finally’-statement.

Declaration of exceptions
KBasic demands that every procedure that can raise an exception must define a exception with a
‘Throw’-statement in its declaration. Example:

75 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Sub mySub() Throws myException1, myException2
' statements which can raise myException1 or myException2
...
End Sub

Define and generate exceptions
Raise your own exceptions using the ‘Throw’-statement. After ‘Throw,' you must write the object to
throw. You often create these object before throwing it, using the ‘New’-statement: Throw New
MyException1()

Syntax:
Throw ExceptionObject

If an exception is thrown, the normal program execution is left and KBasic tries to find a proper
‘Catch’-statement for these exception. It searches all statements including the place the exception
was thrown. All ‘Finally’-Statements are executed on this path. To use exceptions is a creative way
of dealing with errors; it is easy and clean to read. Often you can use a simple error object, but
sometimes it is better to use a newly created error object. Syntax:
Try
 [Statements]
Catch (Name As Exception)
 [Statements]
End Catch

Try
 [Statements]
Catch (Name As Exception)
 [Statements]
Catch (Name As Exception)
 [Statements]
End Catch

Try
 [Statements]
Catch (Name As Exception)
 [Statements]
Finally
 [Statements]
End Catch

Complete example:
Class rumba

 Sub dance
 Print "rumba.dance"
 End Sub

End Class

Class samba

 Sub dance
 Print "samba.dance"
 End Sub

76 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

End Class

Public Sub test() Throws rumba, samba
 Throw New rumba ' return rumba = new rumba
End Sub

Public Sub tt2() Throws samba

 Try
 test()
 Catch (b As rumba)
 Print "tt2: got you!"
 b.dance()
 Finally
 Print "tt2: will be always executed, whatever happend"
 End Catch

End Sub

Public Sub tt()

 tt2()

Catch (c As samba)
 Print "tt: got you!"
 c.dance()
Finally
 Print "tt: will be always executed, whatever happend"
End Sub

tt()

Exception at the end of a procedure
It is possible to catch an exception at the end of a procedure, which covers the whole procedure. It
is easier to read the code and is something like the old ‘On Error GoTo.' Write down the needed
catch and finally statements. A try statement is not needed because the whole procedure is meant.

Example:
Public Sub tt()

 tt2()

Catch (c As samba)
 Print "tt: got you!"
 c.dance()
Finally
 Print "tt: will be always executed, whatever happend"
End Sub

Syntax:
Catch (Name As Exception)
 [Statements]

77 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Finally
 [Statements]
End Catch

The KBasic development environment
The KBasic development environment contains windows, toolbars, and editors that make
developing your KBasic application easy. It is actually an integrated development environment
(IDE). When a development environment is said to be integrated, the tools in the environment work
together. For example, the compiler might find an error in the source code. In addition to displaying
the error, KBasic opens the source file in the text editor and jumps to the exact line in the source
code where the error occurred. A large part of application development involves adding and
arranging controls on forms. KBasic provides tools to make designing forms a simple process.

Windows
KBasic windows are used to develop your programs, including monitoring the status of your
projects at any time. These windows include:

• Form designer – uses drag and drop controls, as well as arranges them in this main
development area. It is the primary tool you use to create your programs.

• Project window – works with the different parts of your project in the project window. Its
views include objects and files.

• Property window – lists and lets you control the properties for your controls. You can resize,
name, change visibility, assign values, and change colors and fonts of your controls.

• Toolbox window – the central place where often used controls can be accessed
• Source code editor – where you add and customize source code for your project in any phase

of the development cycle.

Toolbars
KBasic provides an extensive set of toolbars. Toolbars can be docked in the KBasic window or
floated on the screen.

Editor
KBasic has one editor for creating and managing KBasic projects. You can use this editor to control
the development of your projects, such as editing source code and manipulating classes. The source
code editor is a tool for editing source code.

Debugger
One of the most powerful tools in the KBasic environment is the integrated debugger (only in the
professional version). The debugger allows you to watch your programs execute line by line. As
your program executes, you can observe the various components of the program to see how they are
behaving. By using the debugger, you can monitor: the values stored in variables which
subs/functions/methods are called the order in which program events occur

Classes and objects of KBasic
There are two types of objects in KBasic: visual objects and invisable objects. A visual object is a

78 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

control, is visible at runtime, and lets users interact with your application. It has a screen position, a
size, and a foreground color. Examples of visual objects are forms and buttons. An invisible object
is not visible at runtime, such as a timer. Some objects can contain other components, such as an
application window containing a button. With KBasic, you add visual objects/controls to your forms
to assemble applications.

Projects
Projects keep your work together. When developing an application in KBasic, you work mainly
with projects. A project is a collection of files that make up your KBasic application. You create a
project to manage and organize these files. KBasic provides an easy yet sophisticated system to
manage the collection of files making up a project. The project window shows each item in a
project. Starting a new application with KBasic begins with the creation of a project. So before you
can construct an application with KBasic, you need to create a new project. A project consists of
many separate files collected in one project directory, where one *.kbasic_project file is and many
other files:

• *.kbasic_module
• *.kbasic_class
• *.kbasic_form

Forms
In your Kbasic-application, forms are not only masks for inputting and changing data but they are
the graphical interface of your application. In the eyes of the beholder, they are the application! By
creating your application using forms, you control the program flow with events that are raised in
the forms.

Central meaning of forms
Each form in a KBasic application has a form module with event procedures. Those event
procedures react to events raised in the form. Additionally, every module can contain other non-
event procedures. A form module is part of every form. When you copy a form, its form module is
automatically copied, too. If you delete a form, its form module is deleted as well. KBasic creates a
form module automatically, so you need only to write the event procedures and other procedures.
Forms hold your KBasic program together!

Procedure in forms
The procedures in form modules of a form are private procedures of this form; you can use them
only inside the form module. Because the procedures are private inside a form module, you can use
the equally named procedures in many forms. But the names of procedures in global modules must
be equal. It is possible to create a procedure in a form module that has the same name as a
procedure in a global module. In this case, KBasic uses two rules to recognize the correct procedure
to execute:

KBasic searches the current form module at first
If KBasic does not find a procedure with the needed name, it searches the global modules (but not
the other form modules) for the needed procedure name.

79 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

All calls inside a module in which the procedure is declared reaches this procedure. Calls outside
the module run the public procedure. So all calls inside a module, in which the procedure is
declared, reaches this procedure. Calls outside the module run the public procedure.

Compatibility VB6 = KBasic
KBasic supports 100% of the syntax of VB6. Many components are equal as well. It is possible to
develop GUI applications with well-known BASIC syntax in a modern fashion. KBasic comes with
truly Java-like object orientation and backward support for VB6 and QBasic, as it is 100% syntax
compatible. KBasic combines the expressive power of object-oriented languages like C++ with the
familiarity and ease of use of VB6. It allows developers with an installed base of VB6 applications
to start developing for a mixed Windows, Mac OS X, and Linux environment without having to
face a steep learning curve: KBasic uses the familiar visual design paradigm and has a full
implementation of the BASIC language.

Migrating from VB6 to KBasic
Some information which might help you to migrate are listed in the following:

• do not use () to access arrays, better use []
• do not use ‘Option OldBasic’ or ‘Option VeryOldBasic’
• do not use ‘On Error Goto’, better use ‘Try Catch’
• do not use ‘Nothing’, better use ‘Null’
• avoid the use of the data type ‘Variant’
• do not use ‘class_initialisize’, better use ‘Constructor’, the same for the destructor
• do not use ‘Call’ when calling a sub or function
• do not use ‘Optional’ and ‘IsMissing’ with arguments in subs or functions, better use the

default value of an argument
• use always ‘Do While…Loop’ and ‘Do …Loop While’ instead of the other loops
• always write many comments in your source code
• use in conditions ‘AndAlso’ and ‘OrElse’ instead of the binary operators ‘And’ and ‘Or’
• avoid the use of ‘ByRef’ with primitive data types to get faster execution speed
• do not use ‘Data’ and ‘Def*’, like ‘DefInt’
• use enumerations instead of many integer constants
• use constants, instead of the use of numeric literals many times in your source code
• avoid the use of ‘GoSub’, better use real functions or real subs
• avoid the use of ‘GoTo’, better use loops and other control flow language elements
• ‘Let’ and ‘Set’ are not needed
• use ‘For Each’, when it is possible
• use ‘For i As Integer = 0 To 10 Next’, instead of declaring the counter variable outside of the

loop
• name the variable names without giving them suffixes
• use always () when you call a sub or function

KBasic's virtual machine
The KBasic virtual machine is the environment in which KBasic programs are executed. It is a kind
of abstract computer and defines the commands a KBasic program can use. These commands are
named p-code or pseudo code. In general this means KBasic-pcode is the same for the virtual
machine as a machine code statement is for the CPU. A p-code is a command with length of 2 bytes

80 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

generated by the KBasic-compiler and interpreted by the KBasic-interpereter. When the compiler
compiles a KBasic program it produces a set of p-codes and saves them. The KBasic-interpreter
executes these pseudo-codes. It is important to know that the name ‘KBasic’ means much more than
a programming language. It means also a complete computer environment. KBasic contains two
components: KBasic design (the programming language) and KBasic runtime (the virtual machine).

What are the main functions of the virtual machine?

The virtual machine (VM) does the following tasks:

• Assign allocated memory to created objects
• De-allocate memory automatically
• Handle the stack and registry of variables
• Access the host system, like using devices

Appendix

Argument
A value that is passed to a procedure or function. Also see Parameter.

Arithmetic Operations
Mathematical operations such as addition, multiplication, subtraction, and division that produce
numerical results.

Array
A variable that stores a series of values accessed using a subscript.

BASIC
Beginner’s All-Purpose Symbolic Instruction Code, the computer language upon which KBasic is
based.

Bit
The smallest piece of information a computer can hold. A bit can be only one of two values, 0 or 1.

Boolean
A data type representing a value of true or false.

Boolean Expression
A combination of terms that evaluates to a value of true or false. For example, (x = 5) and (y = 6).

Branching
When program execution jumps from one point in a program to another, rather than continuing to
execute instructions in strict order. Also see Conditional Branch and Unconditional Branch.

81 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Breakpoint
A point in a program at which program execution should be suspended to enable the programmer to
examine the results up to that point. By setting breakpoints in a program, you can more easily find
errors in your programs. Also see Debugging.

Byte
A piece of data made up of eight bits. Also see Bit.

Compiler
A programming tool that converts a program’s source code into an executable file. KBasic
automatically employs a compiler when you run a program or select the File menu’s Make
command to convert the program to an executable file (only Professional Version). Also see
Interpreter.

Concatenate
To join end to end two text strings into one text string. For example, the string “OneTwo” is a
concatenation of the two strings “One” and “Two.” Conditional Branch When program execution
branches to another location in the program based on some sort of condition. An example of a
conditional branch is an If/Then statement that causes the program to branch to a program line
based on a condition such as If (x=5).

Constant
A predefined value that never changes.

Data Type
The various types of values that a program can store. These values include Integer, Long, String,
Single, Double, and Boolean.

Debugging
The act of finding and eliminating errors in a program.

Decrement
Decreasing the value of a variable, usually by 1. Also see Increment.

Double
The data type that represents the most accurate floating-point value, also known as a double-
precision floating-point value. Also see Floating Point and Single.

Empty String
A string that has a length of 0, denoted in a program by two double quotes. For example, the
following example sets a variable called str1 to an empty string: str1 = “”.

82 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Event
A message that is sent to a program as a result of some interaction between the user and the
program.

Executable File
A file, usually an application, that the computer can load and run. Most executable files end with the
file extension .EXE on Windows.

File
A named set of data on a disk.

Floating Point
A numerical value that has a decimal portion. For example, 12.75 and 235.7584 are floating-point
values. Also see Double and Single.

Form
The KBasic object that represents an application’s window. The form is the container on which you
place the controls making up your program’s user interface.

Function
A subprogram that processes data in some way and returns a single value representing the result of
the processing.

Global Variable
A named value accessed from anywhere within a program module.

Increment
Increasing the value of a variable, usually by 1. Also see Decrement.

Infinite Loop
A loop that can’t end because its conditional expression can never evaluate to true. An infinite loop
ends only when the user terminates the program. Also see Loop and Loop Control Variable.

Initialize
Setting the initial value of a variable.

Integer
A data type representing whole numbers between –2,147,483,648 to 2,147,483,647. The values 240,
–128, and 2 are examples of integers. Also see Long.

83 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Interpreter
A programming tool that executes source code one line at a time unlike a compiler that converts an
entire program to an executable file before executing any of the program’s commands. Also see
Compiler.

Literal
A value in a program that is stated literally. That is, the value is not stored in a variable.

Local Variable
A variable accessed only from within the subprogram in which it is declared. Also see Global
Variable and Variable Scope.

Logic Error
A programming error that results when a program performs a different task than the programmer
thought he programmed it to perform. For example, the program line If X = 5 Then Y = 6 is a
logical error if the variable X can never equal 5. Also see Runtime Error.

Logical Operator
A symbol comparing two expressions and resulting in a Boolean value (a value of true or false). For
example, in the line if X = 5 and Y = 10 then Z = 1, and is the logical operator. Also see Relational
Operator.

Long
A data type that represents integer values from –2³² - 1 to +2³². Also see Integer.

Loop
A block of source code that executes repeatedly until a certain condition is met.

Loop Control Variable
A variable holding the value that determines whether a loop continues to execute.

Machine Language
The only language a computer truly understands. All program source code must be converted to
machine language before the computer can run the program.

Mathematical Expressions
A set of terms using arithmetic operators to produce a numerical value. For example, the terms (X +
17) / (Y + 22) make up a mathematical expression. Also see Arithmetic Operations.

Method
A procedure associated with an object or control that represents an ability of the object or control.

84 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

For example, a Command Button’s Move method repositions the button on the form.

Numerical Literal
A literal value that represents a number, such as 125 or 34.87. Also see Literal and String Literal.

Numerical Value
A value that represents a number. This value can be a literal, a variable, or the result of an arithmetic
operation.

Object
Generally, any piece of data in a program. Specifically in KBasic, a set of properties and methods
that represent some sort of real-world object or abstract idea.

Order of Operations
The order in which KBasic resolves arithmetic operations. For example, in the mathematical
expression (X + 5) / (Y + 2), KBasic performs the two additions before the division. If the
parentheses had been left off, such as in the expression X + 5 / Y + 2, KBasic would first divide 5
by Y, then perform the remaining addition operations.

Parameter
Often meaning the same as “argument,” although some people differentiate argument and parameter
where an argument is the value sent to a procedure or function and a parameter is the variable in the
function or procedure that receives the argument. Also see Argument.

Procedure
A subprogram performing a task in a program but does not return a value. Also see Function.

Program
A list of instructions for a computer.

Programming Language
A set of English-like keywords and symbols that enable a programmer to write a program without
using machine language.

Program Flow
The order in which a computer executes program statements.

Property
A value representing an attribute of an object or control.

85 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

Read-Only Property
A property whose value cannot be changed from within a program. However, a program can
retrieve (read) a property’s value.

Relational Operator
A symbol that determines the relationship between two expressions. For example, in the expression
X > 10, the relational operator is >, which means “greater than.” Also see Logical Operator.

Return Value
The value a function sends back to the statement that called the function. Also see Function.

Runtime Error
An system error that occurs while a program is running. An example is a divide-by-zero error or a
type-mismatch error. Without error handling such as that provided by the Try/Catch statement,
runtime errors often result in a program crash.

Scope
See Variable Scope.

Single
The data type that represents the least accurate floating-point value, also known as a single-
precision floating-point value. Also see Double and Floating Point.

Source Code
The lines of commands making up a program.

String
A data type that represents one or more text characters. For example, in the assignment statement
str1 = “I’m a string,” the variable str1 must be of the String (or Variant) data type.

String Literal
One or more text characters enclosed in double quotes.

Subprogram
A block of source code that performs a specific part of a larger task. In KBasic, a subprogram can
be either a procedure or a function. Also see Function and Procedure.

Unconditional Branch
When program execution branches to another location regardless of any conditions. An example of
an unconditional branch is the GoTo statement.

86 / 87

KBasic Manual: „The KBasic Book“ - (C)opyright Bernd Noetscher’s KBasic Software 2000-2007. All rights reserved.

User Interface
The visible representation of an application, usually made up of various types of controls, that
enables the user to interact with the application.

Variable
A named value in a program. This value can be assigned and reassigned a value of the appropriate
data type.

Variable Scope
The area of a program in which a variable can be accessed. For example, the scope of a global
variable is anywhere within the program, whereas the scope of a local variable is limited to the
procedure or function that declares the variable. Also see Global Variable and Local Variable.

Variant
A special data type that can represent any type of data. More accurately, KBasic manages the data
type of a Variant value for you. This data type is very inefficient and should be avoided when
possible. KBasic manages the data type of a Variant value for you. This data type is very inefficient
and should be avoided when possible.

87 / 87

	First Edition
	About this book
	Why You Should Read This Book
	Note Of Thanks
	About The Author
	Supporter
	Give Us Feedback
	New set of manuals about KBasic
	Conventions used in this book / Way of writing
	Sources for further information
	Introduction
	The Big Mystery
	What is a Computer Program?
	Programming Languages
	History of the Name
	All Kinds of BASIC
	Compilers and Interpreters
	The Programming Process
	Attack of the Bugs
	How much KBasic do I need to know to use it?
	Something You Need to Know
	Introduction to the KBasic programming language
	What is KBasic?
	Warning
	Examples
	KBasic is Object-Orientated
	KBasic is Easy to Learn
	KBasic is object-orientated
	KBasic is easy to learn
	Interpreted
	Stable
	KBasic is Fast
	Why KBasic Succeeds
	A Simple Example

	Rapid application development
	How Can I Get KBasic?
	Installation of KBasic / Installation description / System needs
	Starting KBasic
	FAQ
	What is the difference between KBasic and Visual Basic 6?
	Can I import existing Visual Basic 6 programs automatically?
	On which platform is KBasic available?

	KBasic-Syntax
	KBasic is not one programming language, but three
	Software development with KBasic
	Event controlled programming vs. traditional programming
	How does an event controlled application run?
	Three Programming Steps
	Object orientated programming with KBasic
	Objects and classes
	Inheritance of classes
	KBasic-Syntax

	Statements and expressions
	Multi-Line statements
	Variables and DataTypes
	Declaration of Variables / Explicit declaration
	Declarations of variables in different scopes
	Declaration of variables automatically / implicit declaration
	Local variables
	Assignment-statement
	Lifetime of variables
	Place of declaration

	Data Types
	Simple Data Types
	User defined types
	Class types/Objects
	Type Variant
	Suffix of variables

	Comments
	Way of naming
	Literals
	Expressions
	Constants
	Operators and Operands
	Operators for calculating
	Increment and Decrement
	Comparision
	Logical operators (Boolean Operators)
	Other Operators
	String concatenating
	Operator order

	Avoiding name collision
	Editing source code
	Working with objects
	Create new objects
	Use of New
	What happens when using 'New'?
	Several Constructors
	'Null' (or 'Nothing')
	Releasing objects automatically
	Releasing objects manually
	Create a class
	Classes are not executed, but methods are
	Accessing objects
	Accessing class-variables and instance-variables
	Class-methods and instance-methods
	Calling methods
	References to objects
	Copying objects
	Comparision of objects
	Summary: Objects, properties, methods and events

	Creating object variables
	Declaration of an object variable
	Assignment of objects to an object-variable
	Use current instance or object / Me / Parent
	Second time use of 'Parent'
	Casting of objects and simple data types
	Upcasting and downcasting implicitly
	Comparing objects
	Asking about objects and classes
	Subclassing and inheritance
	Constructor chaining
	The default constructor
	Hidden Variables
	Hidden Methods
	Overriding methods
	Dynamic-searching of methods
	Calling an overrided method
	Hiding data
	Scope modifiers
	Some tips for using scope modifiers
	Abstract Classes and Methods

	Arrays
	Different kinds of arrays
	Declaration
	Getting lower and upper bound
	Changing the lower bound
	Use of multidimensional arrays
	Save 'Variant'-values in arrays
	Change the size of a dynamic array
	Array-reset / array-delete

	Control of the program flow
	Decisions
	Single decision - If
	IIf – short if
	Select Case
	Switch – short select case
	Choose – short select case
	Unconditional jumping
	Loop-statements
	For Next
	Optimize For...Next-Loops
	Other kind of loops
	Do While...Loop
	Do...Loop Until
	Do...Loop While
	Do Until...Loop
	While...Wend
	While...End While
	Explicitly leave a loop
	Explicitly test a condition
	Nested control structures

	Procedures
	Sub-Procedure
	Function-Procedure
	Arguments
	Named and optional arguments
	Writing function-procedure
	Call of sub-procedures and function-procedures
	Add comments to a procedure
	Hints for calling procedures
	Leave procedure
	Writing recursive procedures
	Release unused variables
	Overloading of procedures
	Event procedures
	General procedures
	Functions
	Data Types of functions
	Function Return

	Properties
	Conversion
	Modifiers / Scopes
	Local scope
	Private module scope

	User Defined Data Type (Type...End Type)
	Enumeration (Enum...End Enum)
	Classes
	Classes unlike procedures are not executed
	Edit Class

	Module
	Global Modules
	Modules are not executed, unlike procedures are

	Error handling
	Exceptions
	Finally
	Declaration of exceptions
	Define and generate exceptions
	Exception at the end of a procedure

	The KBasic development environment
	Windows
	Toolbars
	Editor
	Debugger
	Classes and objects of KBasic
	Projects
	Forms
	Central meaning of forms
	Procedure in forms
	KBasic searches the current form module at first

	Compatibility VB6 = KBasic
	Migrating from VB6 to KBasic

	KBasic's virtual machine
	Appendix
	Argument
	Arithmetic Operations
	Array
	BASIC
	Bit
	Boolean
	Boolean Expression
	Branching
	Breakpoint
	Byte
	Compiler
	Concatenate
	Constant
	Data Type
	Debugging
	Decrement
	Double
	Empty String
	Event
	Executable File
	File
	Floating Point
	Form
	Function
	Global Variable
	Increment
	Infinite Loop
	Initialize
	Integer
	Interpreter
	Literal
	Local Variable
	Logic Error
	Logical Operator
	Long
	Loop
	Loop Control Variable
	Machine Language
	Mathematical Expressions
	Method
	Numerical Literal
	Numerical Value
	Object
	Order of Operations
	Parameter
	Procedure
	Program
	Programming Language
	Program Flow
	Property
	Read-Only Property
	Relational Operator
	Return Value
	Runtime Error
	Scope
	Single
	Source Code
	String
	String Literal
	Subprogram
	Unconditional Branch
	User Interface
	Variable
	Variable Scope
	Variant

